
A-lS583 DAVID W TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/A 2/

CALCULATION OF CONTACT PRESSURES AND FRICTIONAL EFFECTS 
ON MECH--ETC(U)

AUS 82 0 E LESAR

UNCLASSIFIED, DTNSRDC-82/033 NL; ZIIIIEEEEEEEEEhmmmmmmmEEmmI
Emmmmmmmmmu
mmmmmmmmmmu
mmmmmmml
mmmmhhmmmmmmum
mmmmmmum



UNCLARSIFTED
SECURITY CLASSIFICATION OF THIS PAGE (When Does Entero

REPORT DOCUMENTATION PAGE BRE CMPLETNORM
1. REPORT NUMBER 2. GOVT ACCESSION NO S. RECIPIENT*S CATALOG NUMBER

DTNSRDC-82/033 M) 1 4 1 5 R
4. TITLE (md Subtitle) S. TYPE OF REPORT & PERIOO COVERED

CALCULATION OF CONTACT PRESSURES AND FRICTIONAL
* EFFECTS ON MECHANICAL CONTACT SURFACES BY

FINITE ELEMENT METHODS WITH APPLICATION S PERFORMING ORG. REPORT NUMBER

TO FRETTING DAMAGE PREDICTION
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMUER(e)

Douglas E. Lesar

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA A WORK UNIT NUMBERSDavid W. Taylor Naval Ship R&D Center Program Element 61152N

Bethesda, Maryland 20084 Task Area ZR0230301
Work Unit 1720-110

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Dr. Alan Powell August 1982
Technical Director, DTNSRDC Is. NUMBER OF PAGES

Code 01 136
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlllng Office) IS. SECURITY CLASS. (of this report)

Director of Laboratory Programs UNCLASSIFIED
Naval Material Command
Code 08L Isa. DECL ASSI FIC ATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the obetrect entered In Block 20. It different fmg, Report)

; "ii. SUPPLEMENTARY NOTES

IS. KEY WORDS (Contmue o rovweed olde If neceec.,a md Identify by block number)

Cntact Stress Frictional Slip
Coulomb Friction Fretting Damage
Finite Element Methods Shrinkfit Assemblies

20. ABSTRACT (Centiuen reveree eide If neceeearv nd ldentlfy by block minbet)

:'Contact stresses, contact forces, relative contact surface displace-

ments, and the dissipative effects of friction are computed, by the finite
element method, for various two- and three-dimensional contact problems.
The finite element technique is verified by analysis of several two-
dimensional frictionless contact problems; the Hertz contact of two cylin-
ders, a rigid sleeve/elastic shaft shrinkfit, and an elastic sleeve/elastic

(Continued on reverse side)

DO I JON73 1473 EDITION OF I NOV 65 IS OBSOLETES/, 0 ,02 LN 01- 60 UNCLASSIFIED
S/N 010O2- LF* 04. 6601 SECURITY CLASSIFICATION OF THIS PAGE (m DIe



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Da. Enfemd3

(Block 20 continued)

'shaft shrinkfit. In these cases the finite element calculations compare
favorably to existing solutions. The contact analysis capability is
extended to frictional contacts by considering plane stress and axi-
symmetric contact problems with friction and slip, for which reasonable
results are produced. The capability is further extended' to complex
three-dimensional contacts by an effort to determine the contact forces
and frictional dissipation taking place in the cyclic bending of a
shrinkfit assembly. This work demonstrates that advanced nonlinear
finite element methods can be used to solve a variety of mechanical
engineering problems involving unlubricated contact surfaces and the
effects of friction.

Accession For

NTIS GRA&I
DTIC TAB

P~i

d.-* t.

Dist

IVUPECTED

UNCLASSIFIED
SECURITY CLASSIFICATION OF ?"IS PAGE(IMo. Dale BuimM0

. ...



TABLE OF CONTENTS

Page

*LIST OF FIGURES............................................................. iv

LIST OF TABLES...................... ...... .................................... ix

NOTATION.................................. .................................

LIST OF ABBREVIATIONS...................................... ................... xi

ABSTRACT....................................................................... 1

ADMINISTRATIVE INFORMATION........................................ ........... 1

METRIC CONVERSION ............................................................... 1

INTRODUCTION................................................................... 2

OBJECTIVE AND SCOPE................................................ ............ 3

BACKGROUND.................................................................4

CLASSICAL MATHEMATICAL APPROACHES TO CONTACT4
PROBLEMS OF SOLID MECHANICS................................................. 4

FINITE ELEMENT APPROACHES IN CONTACT, FRICTION, AND
GAPPING PROBLEMS IN SOLID MECHANICS........................................ 5

APPROACH..................................................... ........ .... ...- 7

LAGRANGE MULTIPLIER METHOD FOR FINITE ELEMENT MODELLING
OF CONTACT, GAP, AND FRICTION PROBLEMS............................ ...... 7

STIFFNESS METHOD FOR FINITE ELEMENT MODELLING OF
FRICTIONAL BEHAVIOR IN CONTACT/GAP, AND FRICTION PROBLEMS................. 9

CONTACT CONSTRAINT/CONTINUUM ELEMENT COMPATIBILITY........................ 10

ANALYSIS....................................................................... 12

VERIFICATION OF LAGRANGE MULTIPLIER METHOD
FOR STATIC FRICTIONLESS CONTACTS........................................... 12

Axisymmetric Rigid Sleeve and Elastic Shaft Shrinkfit .................. 13
Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit .............. 15

EVALUATION OF LAGRANGE MULTIPLIER METHOD FOR 3-D
STATIC FRICTIONLESS CONTACT. ................................. ............ 19



Page

EVALUATION OF LAGRANGE MULTIPLIER METHOD FOR STATIC
CONTACTS WITH FRICTION AND SLIP ........................................ 20

Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit ............. 20

2-D Friction and Slip Problem ....................................... 21

Primitive Model of 3-D Shaft and Sleeve Shrinkfit
with Monotonic Bending ........................................... 22

Improved Model of 3-D Shaft and Sleeve Shrinkfit

with Monotonic Bending....... .................................... 24

VERIFICATION AND EVALUATION OF FRICTIONAL STIFFNESS METHOD

FOR STATIC FRICTIONAL ADHERENCE AND SLIP PROBLEMS ....................... 25
2-D Friction and Slip Problem ........................................ 25

Primitive Model of 3-D Shaft and Sleeve Shrinkfit

with Monotonic Bending ............................................ 26

APPLICATION OF FRICTIONAL STIFFNESS METHOD TO A COMPLEX 3-D

FRETTING CORROSION AND FRETTING FATIGUE PROBLEM ......................... 29

Primitive Model of 3-D Shaft and Sleeve Shrinkfit

with Cyclic Bending ............................................... 32

Improved Model of 3-D Shaft and Sleeve Shrinkfit

with Cyclic Bending ............................................... 33

APPLICATION OF LAGRANGE MULTIPLIER METHOD TO CONTACT/GAP PROBLEMS ....... 35

POSSIBLE IMPROVEMENTS ...................................................... 35

IMPROVED CONTACT ELEMENTS ............................................... 35

IMPROVED FRICTION MODELLING ............................................. 36

SUMMARY AND CONCLUSIONS .................................................... 37

TOPICS FOR FUTURE WORK .................................................... 38

ACKNOWLEDGMENTS ........................................................... 40

APPENDIX - EDGE EFFECTS IN CONTACT PROBLEMS ............................... 115

REFERENCES ................................................................ 117

LIST OF FIGURES

1 - Contact Surface Node Pair Configurations ............................... 42

2 - Contact Forces Resulting from Uniform Pressure on One Face of

Rectangular 3-D Solids ................................................. 43

iv



Page

3 - Contact Surface Compatibility Linearizations.......................... 44

4 - Distortion of Predicted Contact Boundary Due to
Compatibility Linearization .......................................... 45

5 - Elastic Shaft/Rigid Sleeve Contact ................................... 46

6 - Finite Element Representation of Elastic Shaft/Rigid
Sleeve Contact ....................................................... 46

7 - Finite Element Mesh for Axisymmetric Elastic Shaft/Rigid Sleeve
Contact Problem ................................ . ..................... 47

8 - Mixed 8-Node and 4-Node Finite Element Mesh for Axisymmetric
Rigid Sleeve/Elastic Shaft Problem ................................... 48

9 - Radial Stress Near Shaft Surface, Mixed 8-Node and
4-Node Element Mesh .................................................. 49

10 - Elastic Shaft/Rigid Sleeve, Radial Shaft
Deflection Predictions ............................................... 50

11 - Elastic Shaft/Rigid Sleeve, Axial Shaft Deflections
at Inner and Outer Radii .............................................. 51

12 - Elastic Shaft/Rigid Sleeve, Radial Stresses Near
Contact Surface and in Shaft Interior ................................ 52

13 - Elastic Shaft/Rigid Sleeve, Hoop Stresses Near

Contact Surface and in Shaft Interior ................................ 54

14 - Elastic Shaft/Rigid Sleeve, Axial Stress Near Shaft Surface .......... 56

15 - Elastic Shaft/Rigid Sleeve, Shear Stress in Shaft Interior ........... 57

16 - Elastic Shaft/Rigid Sleeve, Contact Element Pressures ................ 58

17 - Elastic Shaft/Elastic Sleeve Contact ................................. 59

V: 18 - Finite Element Representation of Elastic Shaft/Elastic
Sleeve Contact ....................................................... 59

19 - Finite Element Mesh for Axisymmetric Elastic Shaft/Elastic Sleeve
Contact Problem ...................................................... 60

20 - Typical Stress Prediction of Fully Integrated Higher-Order Solids
Near a Steep Stress Gradient ......................................... 61

4v



Page

21 - Calculation of Contact Surface Nodal Stress by
Extrapolation and Averaging .......................................... 62

22 - Elastic Shaft/Elastic Sleeve, Radial Displacements at
Outer Shaft Radius ................................................... 63

23 - Elastic Shaft/Elastic Sleeve, Radial Displacement
Restraint Comparison ................................................. 64

24 - Elastic Shaft/Elastic Sleeve, Axial Displacements at
Contact Surface.. .................................. ................ 65

25 - Elastic Shaft/Elastic Sleeve, Radial Stresses Extrapolated to
Contact Surface ...................................................... 66

26 - Elastic Shaft/Elastic Sleeve, Hoop Stresses Extrapolated to
Shaft and Sleeve Surfaces ............................................ 67

27 - Elastic Shaft/Elastic Sleeve, Axial Stress Extrapolated
to Contact Surface ................................................... 68

28 - Elastic Shaft/Elastic Sleeve, Contact Element Pressure Compared
to Extrapolated Radial Stress ..................................... 69

29 - 3-D Finite Element Mesh for Elastic Shaft/Elastic
Sleeve Shrinkfit ..................................................... 70

30 - Elastic Shaft/Elastic Sleeve, Comparison of Radial Deflection
Predictions for Axisymmetric and 3-D Models .......................... 71

31 - Elastic Shaft/Elastic Sleeve, Comparison of Contact Surface
Radial Stress for Axisymmetric and 3-D Models ......................... 72

32 - 3-D Shrinkfit, Radial Stress Distributions in Shaft
and Sleeve Near Edge of Contact Zone ................................. 73

33 - Contact Pressures Calculated from Contact Forces ..................... 74

34 - Elastic Shaft/Elastic Sleeve, Comparison of Contact Element
Pressure for Axisymmetric and 3-D Models ............................ 75

35 - Elastic Shaft/Elastic Sleeve Shrinkfit with Friction, Comparison
of Predicted Axial Displacements to Frictionless Result .............. 76

36 - Elastic Shaft/Elastic Sleeve Shrinkfit with Friction, Comparison
of Predicted Axial Stresses to Frictionless Result ................... 77

vi

7. , - ..



Page

37 - Elastic Shaft/Elastic Sleeve Shrinkfit with Friction, Contact

Surface Tangential Shear Based on Contact Element Forces ............. 78

38 - Finite Element Mesh for Flat Rigid Punch/Elastic Slab
Contact with Friction ................................................ 79

39 - Coarse Finite Element Mesh for 3-D Elastic Shaft/Elastic

Sleeve Shrinkfit with Bending and Friction ........................... 80

40 - Experimental Fretting Corrosion Test Machine ......................... 81

41 - 3-D Elastic Shaft/Elastic Sleeve Shrinkfit with Bending and

Friction, Frictional Slip Development in Plane of Bending
with Increasing Bending Load ......................................... 82

42 - Improved Finite Element Mesh for Three-Dimensional Elastic
Shaft/Elastic Sleeve Shrinkfit with Bending and Friction ............. 83

43 - Flat Rigid Punch/Elastic Slab Contact with Friction, Comparison
of ABAQUS Results to Conway et al. Solution .......................... 84

44 - Failure of ABAQUS Program to Predict Slip Due to Low
Frictional Stiffness ................................................. 85

45 - Coarsely Discretized 3-D Shaft/Sleeve Shrinkfit with Bending
and Friction, ABAQUS Frictional Slip Predictions for
Various Frictional Stiffnesses ....................................... 86

46 - Coarse 3-D Shrinkfit with Friction and Bending, ABAQUS
Contact Force Ratio Predictions in Adherence Regime
for Various Frictional Stiffnesses ................................... 87

47 - Coarse 3-D Shrinkfit with Friction and Bending, ABAQUS Contact
Force Ratio Predictions in Mixed Slip/Adherence Regime
for Various Frictional Stiffnesses................................... 88

48 - Coarse 3-D Shrinkfit with Friction and Bending, ABAQUS
LRelative Tangential Contact Surface Displacement

Predictions vs. Bending Load ......................................... 89

49 - Illustration of Differences Between Cyclic Bending and
Rotating Bending ..................................................... 90

50 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Slip
Events at Crucial Locations for Kf 2 x 10......................... 91

51 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Shear
vs. Normal Stress at Crucial Locations for Kf = 2 x 10 .............. 92

vii

J • I IJ { I ...



Page
52 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Frictional

Shear vs. Relative Tangential Displacement at Crucial Locations
for Kf 2 x 10 ..................................................... 93

53 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic
Relative Tangential Displacement vs. Bending Load
at Crucial Locations for Kf - 2 x 10 ................................ 94

54 - Coarse 3-D Shrinkfit with Friction agd Bending, Cyclic Slip Events

at Crucial Locations for Kf - 6 x 10 ................................ 95

55 - Coarse 3-D Shrinkf!t with Friction and Bending, Cyglic Shear versus
Normal Stress at Crucial Locations for Kf = 6 x 10 .................. 96

56 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Frictional
Shear vs. Relative Tangential Displacements at Crucial
Locations for Kf - 6 x 10 ........................................... 97

57 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Relative
Tangential Displacements vs. Bending Load at Crucial Locations
for Kf - 6 x 10 ..................................................... 98

58 - Finely Discretized 3-D Shrinkfit with Friction and Bendin*,
Comparison of Steady State Slip Responses for Kf = 2 x 10f

and 6 x 105 at 1000 In-lb Maximum Bending Load ....................... 99

59 - Fine 3-D Shrinkfit with Friction and Bending, Comparison of Slip

Predictions for Three Levels of Maximum Bending Moment for
Kf 6 x 10 .. . ... .. .. ... . .. .. ... .. .. .. .. .. ... .. .. .. .. ... .. .. .. .. .. .. 100

60 - Fine 3-D Shrinkfit with Friction and Bending, Cclic Shear vs.
Normal Stress at Crucial Locations, Kf - 6 x 10 , Maximum
Bending Load - 1000 in-lb ............................................ 101

61 - Fine 3-D Shrinkfit with Friction and Bending, C?clic Shear vs.
Normal Stress at Crucial Locations, Kf - 6 x 10 , Maximum
Bending Load - 666-2/3 in-lb ......................................... 102

62 - Fine 3-D Shrinkfit with Friction and Bending, Cclic Shear vs.
Normal Stress at Crucial Locations, Kf - 6 x 10 , Maximum
Bending Load - 333-1/3 in-lb ......................................... 103

63 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional

Shear vs. Relative TanIential Displacements at Crucial
Locations, K - 6 x 10 , Maximum Bending
Load 1000 fn-lb .................................................... 104

viii



P,!

Page

64 - Fine 3-D Shrinkf it with Friction and Bending, Cyclic Frictional
Shear vs. Relative Tangential Displacements at Crucial

Locations, K - 6 x 10 , Maximum Bending
Load = 666-2/3 in-lb ................................................. 105

65 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional
Shear vs. Relative Tangential Displacements at Crucial

Locations K - 6 x 10 , Maximum Bending
Load - 333-i13 in-lb ................................................. 106

66 - Shell on Elastic Foundation Model of Shaft/Sleeve
Contact Problem ...................................................... 107

LIST OF TABLES

1 - Results of MARC Calculations; Attempts to Simulate Conway's
Rigid Punch/Elastic Slab Frictional Contact Problem .................. 108

2 - Results of MARC Calculations; Contact Surface Behavior of

3-D Elastic Shaft/Elastic Sleeve Shrinkfit with Bending
and Friction ......................................................... 109

3 - ABAQUS Analyses of Rigid Punch/Elastic Slab Contact with

Friction, P = 0.35 ................................................... 110

4 - ABAQUS Analyses of Rigid Punch/Elastic Slab Contact with

Friction, p = 0.80 ................................................... il

5 - ABAQUS Analyses of Rigid Punch/Elastic Sl b Contact with
Friction, Frictional Stiffness - 1.1 x 10"........................... 112

6 - Comparison of ABAQUS and MARC Analyses of Coarsely Discretized
3-D Shaft/Sleeve Shrinkfit with Bending and Friction ................. 113

7 - Fine 3-D Shrinkfit with Friction and Bending, Comparison of

Experimental Fretting Damage Extent with Calculated Slip
Zone Extent .......................................................... 114

ix



NOTATION

ai, bi etc. Lengths of element sides

a/h Punch half width to slab depth ratio

b Sleeve half length or contact zone
half length

b/h Sleeve length to thickness parameter

FA, FB, etc. Contact forces at nodes A, B, etc.

FN Normal contact force

FT Tangential friction force intensity

H Sleeve thickness

h Shrinkfit interference
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p Pressure

PA' PB' etc. Contact Pressures at nodes A, B, etc.

PN Normal contact pressure

PT Frictional shear stress

r Radius

r Shaft inner radius

ro, rl, A Shaft outer radius

r2  Sleeve outer radius

ur Radial deflection

uz  Axial deflection

Ur uz Contact surface nodal displacement of body i
in r,z polar coordinates

u1, uu Contact surface nodal displacements of body I
in x,y,z cartesian coordinates
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ABSTRACT

Contact stresses, contact forces, relative contact
surface displacements, and the dissipative effects of
friction are computed, by the finite element method, for
various two- and three-dimensional contact problems.
The finite element technique is verified by analysis of
several two-dimensional frictionless contact problems;
the Hertz contact of two cylinders, a rigid sleeve/elastic
shaft shrinkfit, and an elastic sleeve/elastic shaft shrink-
fit. In these cases the finite element calculations compare
favorably to existing solutions. The contact analysis
capability is extended to frictional contacts by con-
sidering plane stress and axisymmetric contact problems
with friction and slip, for which reasonable results are
produced. The capability is further extended to complex
three-dimensional contacts by an effort to determine the
contact forces and frictional dissipation taking place
in the cyclic bending of a shrinkfit assembly. This
work demonstrates that advanced nonlinear finite element
methods can be used to solve a variety of mechanical
engineering problems involving unlubricated contact
surfaces and the effects of friction.

ADMINISTRATIVE INFORMATION

The work described in this report was performed at the David W. Taylor Naval

Ship Research and Development Center (DTNSRDC) under the In-house Research/In-house

Engineering Development (IR/IED) program, Program Element 61152N, Task Area

ZR0230301, and Work Unit 1720-110.

METRIC CONVERSION

All numerical quantities in this report are expressed in U.S. customary units.

Use the following factors to convert to metric units:

1 in. = 2.54 cm

1 lb - 0.454 kg

I pal W 0.690 N/cm
2

1 lb/in - 1.751 N/cm

1 in-lb - 0.113 J
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INTRODUCTION

In many cases, the reliability of machine elements in power transmission and

power generation systems depends on the integrity of contact surfaces between system

components. Although the wear resistance of component surfaces is a vital consid-

eration, the performance of contact surfaces in a structural mechanical sense is

also very important. All machinery components deform under load, and such deforma-

tions influence both the contact pressures and the frictional forces transmitted

between contact surfaces. These forces are also influenced by the materials and

lubricants Involved.

Many examples can be cited in which contact stresses and the frictional

behavior of contact surfaces affect the various possible failure modes of naval

ship and submarine machine components. Often, the contact surface is lubricated

(e.g. the concentrated contacts arising in gear and bearing assemblies). Surface

fatigue failure mechanisms such as pitting and fretting, which occur in reduction

gear and propulsion shaft bearings, respectively, are influenced by contact pres-

sure and frictional stress. Contact pressure and friction resulting from component

deformation influence the performance of mechanical fastenings (bolts, joints,

rivets, threaded fasteners) and seal systems (O-rings and gaskets). The influence

of contact stresses on failures is an important consideration in high-speed machin-

ery components, such as turbine blade/rotor fastenings. Finally, contact surface

gapping is sometimes a potential problem (e.g. the behavior of preloaded bolts and

blade palm/hub surfaces in controllable pitch propeller systems).

When dealing with contact surface integrity problems, the navy engineering

community has traditionally devoted much attention to the materials aspects.

Solutions to wear, galling and surface fatigue problems have typically been sought

through extensive and expensive experimentation and materials evaluations. The on-

going concern with submarine shaft seals provides a prime example. These machinery

component problems have been addressed almost exclusively from a materials stand-

point, with relatively little attention to the structural mechanical performance.

Clearly, a seal cannot perform as intended unless the component deformations and

the geometry of seal and surrounding components assure an optimum contact surface

load transmission pattern. The experimental line of attack was the only available

recourse when analytical methods for contact and friction analysis were limited,

impractical, or impossible. The rapid development of finite element methods to

2



analyze structural mechanical systems of complex geometry and treat previously

intractable nonlinear phenomena has changed this situation completely.

As naval machinery systems have become more complex, the need for a contact/

friction structural analysis capability has become more acute. Although they retain

their importance, experiments and materials evaluations that account for the Influ-

ence of all variables are difficult and expensive to conduct. An analytical tool

is needed which is capable of mathematically evaluating the performance of contact

surfaces in mechanical component designs. Such an analytical tool may also be of

assistance in failure assessment.

OBJECTIVE AND SCOPE

The purpose of this study is twofold:

(1) To verify evaluate, and refine newly developed nonlinear finite

element techniques for contact stress and friction analysis.

(2) To apply these new techniques to a complex practical engineering

problem, fretting corrosion fatigue, in an attempt to correlate

calculated contact and friction behavior to experimental evidence

of fretting.

The scope of this study is limited in several ways:

(1) The theory is limited to dry, unlubricated contacts. The important

problem area of elastohydrodynamic lubrication is not considered.

(2) Of principal concern are interference contacts over a large surface area;

concentrated contacts are not considered.

(3) Mixed contact/gapping is not considered, although the theory is capable

of straightforward treatment of such problems.

(4) This study is limited to static and quasi-static cyclic loadings, although

theories exist which can handle dynamic impact problems.

(5) The theory describes the effects of contact behavior only in a macroscopic

structural mechanical sense. No attempt is made to address the tribolog-

ical issues of contact and friction behavior (asperity interaction, con-

tact surface irregularity, local cold welding and cracking, etc.)

These limitations can be placed in proper perspective by realizing that this

study is only a first attempt to apply state-of-the-art structural mechanics analy-

sis methods to a wide class of complex, practical contact problems.

3



BACKGROUND

CLASSICAL MATHEMATICAL APPROACHES TO
CONTACT PROBLEMS OF SOLID MECHANICS

The mathematical techniques of elasticity theory have long been used to solve

the static contact problems of solid mechanics. The standard work of Timoshenko

(reference l,* pp. 409-420) contains a treatment of the so-called Hertzian contact

of spheres and cylinders, the simplest type of contact problem and the first one

reduced by rational analysis. The Hertz problems are also discussed by Lubkin

(reference 2, Chapter 42) and by Love (reference 3, pp. 192-200). Many Russian

mathematicians have specialized in contact research, and three treatises on such

problems have been produced. 4-6 The English-language literature also contains a

vast number of papers on a wide variety of contact problems; a few recent samples

are referenced. 7 12

The elasticity approach is important for fundamental understanding and has

provided many useful solutions to engineering problems. From the engineer's stand-

point, however, the purely mathematical approach presents three difficulties:

(1) Complexity

The commonly used specialized techniques (integral transforms, potential

functions) require a in-depth understanding of the theory of partial differen-

tial equations and integral equations. As a result, solutions tend to be

involved mathematical expressions that are not always presentable in closed

form.

(2) Geometrical limitations

In order for elasticity solutions to be tractable, the problem must be

posed in simple coordinate systems (Cartesian, radial). Many practical

contact problems are characterized by complex geometry that does not fit a

standard coordinate system. Also, because specialized elasticity solutions

contain assumptions on boundary conditions and symmetry planes, their valid-

ity is restricted.

(3) Limited threatment of nonlinear effects in mathematical solutions

When friction is considered,for example, (which is rare) the ideal assump-

tion of full adherence is usually invoked, while the real situation may involve

mixed slip and adherence. In contact and gapping situations, the extent of

gapping must be assumed "a priori," an assumption which may be difficult to

*A complete listing of references is given on page 117.

4



justify. The nonlinearity of dynamic contact-impact kinetics is also very

difficult to treat analytically.

This brief critique of classical methods demonstrates the desirability of an

approximate numerical approach to analysis of contact effects in complex naval

engineering problems.

FINITE ELEMENT APPROACHES IN CONTACT, FRICTION,
AND GAPPING PROBLEMS IN SOLID MECHANICS

The finite element method has recently been extended to handle nonlinear con-

tact problems in solid mechanics. For many years, the thrust of research has been

to devise specialized techniques for specific classes of contact problems. Earliest

efforts addressed frictionless contact arising from a prescribed indentation without

gapping.1 3 Techniques were then developed to handle frictionless contact/gap prob-

lems (reference 14, and work by Gifford*); frictionless interference fits without

gapping;1 5- 17 and combinations of contact, gapping, and interference.** The first

finite element treatment for contact and gapping with friction18- 20 considered two-

dimensional contacts modelled by low-order finite elements. This capability has been

extended to three-dimensional problems. 2 1 The general approach of this work is to

formulate the contact problem in terms of conventional incremental equilibrium equa-

tions subject to nonlinear constraint conditions on contact surface displacements

and/or forces. This approach can be conveniently generalized in terms of the clas-

sicial Lagrange multiplier method, in which nonlinear contact constraint equations

and conventional incremental equilibrium equations are solved simultaneously in an

Iterative manner. The Lagrange multiplier approach22 is considered in this study.

Another line of attack is to model contact interfaces as a fictitious layer

of material possessing empirical constitutive properties that approximately describe

observed contact and friction behavior. Contact and gap phenomena can be modelled

with "bilinear springs" that possess very high stiffness when contact is detected

and are assigned vanishingly small stiffness when gapping occurs.2 3 Analogous

"friction springs" can simillarly be activated and deactivated according to whether

Unpublished work by L.N. Gifford of the Structures Department of DTNSRDC.

*Unpublished work by R. A. Lindeman of the U.S. Naval Weapons Laboratory,

Dahlgren, Virginia.
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adherence or slip is occurring.24 ,25 Contact surfaces have also been modelled as

a continuous layer of material with bilinear stiffness.2 6 The bilinear spring

approach has been used in general-purpose nonlinear finite element programs.
2 7 ,28

These works share a common feature; a contact surface stiffness parameter is

assigned which supplements the conventional stiffnesss coefficients of the incre-

mental equilibrium equations. The "stiffness" (also called "penalty") approach

has advantages in some situations and is also considered in this study.

More advanced lines of finite element contact research have also been pursued.

An advanced stiffness-like method which models complex frictional behavior by "bond

elements" has been proposed.29 Complex adherence and slip rules closely resembling

classical plasticity theories have been formulated for two- and three-dimensional

problems.30 ,3 1 These works model frictional behavior by rational constitutive rela-

tions. The constitutive equation approach holds promise for modeling finer details

of friction behavior for a wide variety of materials; however, it is not convenient-

ly applicable to the problems considered here. Finally, a method has been devised

for finite element solution of dynamic contact-impact problems,3 2 ,3 3 which are

vitally important but of little relevance to this study.

These recent works have made possible the approximate numerical analysis of

a wide variety of contact problems. The limitations of classical mathematical

methods, geometry-dependence, and need for special boundary conditions are elimi-

nated quite naturally by finite element techniques. Highly nonlinear contact

phenomena, such as mixed contact and gapping, mixed adherence and slip, and contact/

impact, are accomodated quite generally by finite element codes. Finally, most of

those engineers who do not have the extensive mathematical background needed to

understand elasticity methods can work with even nonlinear finite element methods.

The finite element techniques which have been applied to problems considered

in this study are more fully described in the following section.
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APPROACH

LAGRANGE MULTIPLIER METHOD FOR FINITE
ELEMENT MODELLING OF CONTACT, GAP,
AND FRICTION PROBLEMS

The elastic stiffness matrix and the incremental load vector in the structural

incremental equilibrium equations are formulated in this approach by the generalized

principle of minimum potential energy (or alternatively, the principle of virtual

work). The incremental equilibrium equations are supplemented, however, by con-

straint terms of the Lagrange multiplier type which impose the contact or gap

conditions existing at the current load step. Finite element meshes representing

the solid bodies in the problem are modelled in the usual way by arrays of ele-

ments interconnected at nodal points. The nodal arrangement on surfaces that

initially interfere (as in a shrinkfit), initially contact, and initially contact

but gap apart as loading proceeds, must be such that opposing nodes are paired;

that is, their initial coordinates are either coincident (interference and contact),

or spatially close together and in line with one another (initial gapping, see

Figure 1). It is assumed that displacements in the problem are small, so that

opposing nodes which are initially close together remain so in the course of load-

ing. The analyst specifies "contact elements" or "contact kinematic constraints"

between chosen pairs of candidate contact nodes. The relative normal displacements

are monitored at these node pairs as the structure is loaded. The Lagrange multi-

pliers, which are calculated unknowns as are the nodal displacements, turn out to

be the normal contact forces transmitted between the node pairs. The initial

interference case, which exists If all node pairs are overlapping, is a linear

problem which can be solved in one step since all Lagrange multipliers are active.

In the general case, however, the contact conditions change in the course of

loading (i.e. gaps close or open) and the Lagrange multipliers are made active

(gap closed, contact force transmitted) or set to zero (gap open, no contact force),

depending on the current normal relative displacements. This constitutes the non-

linearity of the problem. A complete mathematical description of the Lagrange

multiplier theory and the associated finite element equations are given, in vec-

Rin22toral form, by Hibbitt and Rubin. Specialized examples of finite element equa-

tion systems have been developed from the general forms in reference 22. These
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unpublished developments illustrate the adherence/slip constraints and the solution

process for various contact conditions of practical interest.
The Lagrange mjltiplier approach is also used to model the frictional behavior

of contact surfaces.22 Classical Coulomb friction theory is applied; this assumes

that an adherence condition exists at a contact node pair when the local frictional

force (force tangential to the contact surface) is below the local static frictional

force limit. Slip (relative tangential displacement) occurs when the frictional

force reaches this limit. The friction limit is defined by an empirical relation

of the normal contact force FN, in which P is the experimentally measured static

friction coefficient:

FT < p * FN (adherence) (I)

FT = p- FN (slip) (2)

In the complete adherence condition, all relative tangential displacements on

the contact surface are constrained to zero, and the frictional forces are unknown.

In the mixed adherence and slip condition, the frictional force is constrained to

FT P * FN at slipping node pairs, and the slip is the unknown quantity associated

with those node pairs. The displacement response to external loading is nonlinear

in a load step; this causes the Coulomb slip limit to be reached at some node pairs

while the others remain adhered. The nonlinear problem is solved by monitoring

the relation of normal force to frictional force, the appropriate constraints being

imposed according to whether equations (1) or (2) hold. After a trial solution

that assumes full adherence everywhere, final equilibrium at the current load is

found through an iterative process that unlocks adhered nodes not satisfying the

Coulomb limit.

The Lagrange multiplier approach for both normal contact/gapping and friction

behavior has been incorporated as the "contact elements" of the MARC general purpose

nonlinear finite element code.3 4 Several finite element contact approaches
19 -2 2

are very similar to the MARC method but do not contain a frictional slip degree of

freedom. They can be considered to be special cases of the MARC approach. As it

turns out, the Lagrange multiplier method works quite well for the normal contact

Authored by D. E. Lesar of the Structures Department of DTNSRDC.
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force/gap part of the contact problem but does not always work well for friction.

Hibbitt, the developer of this method, has indicated that the Lagrange multiplier

approach for friction and slip suffers mathematical instabilities and leads to con-

vergence difficulties in cases where adherence to slip transitions occur.3 5 The

method appears to predict adherence/slip behavior reasonably well in the 2-D analy-

sis, 19 as long as the extent of slip is small. Attempts to apply MARC to the 3-D

friction problems considered here resulted in severe convergence problems. This

poor performance led to the consideration of a new friction theory which borrows

from the so-called "penalty method" used in finite element solutions of contact

problems. This improved friction theory is discussed in the next section.

STIFFNESS METHOD FOR FINITE ELEMENT MODELLING

OF FRICTIONAL BEHAVIOR IN CONTACT/GAP
AND FRICTION PROBLEMS

The penalty (or stiffness) method has been used in the past to model the

contact/gap aspects of contact problems. Candidate contact node pairs are linked

by what amount to simple truss elements that possess a "bilinear stiffness." These

elements are assigned a very high stiffness when the current nodal displacements

indicate a closed gap and a very low stiffness when gapping occurs. This method,

used in ANSYS 2 7 and a previous version of MARC,36 tends to predict physically

invalid contact surface overlap when the "stiffnesses" are not optimally tuned

to the particular problem at hand. This poor performance led to development of

the Lagrange multiplier approach discussed earlier.

Some penalty method concepts have been resurrected in development of a new

friction-constraint element that circumvents possible convergence problems often

encountered in the Lagrange multiplier friction approach. This feature, contained

in the ABAQUS general-purpose nonlinear finite element program 3 7 , retains Lagrange

multiplier contact/gap modelling but makes use of a completely new friction approach

described briefly in the following paragraphs.

The ABAQUS theory assumes that the frictional shear force magnitude FT is

linearly proportional to the tangential contact surface displacement by a "fric-

tional stiffness" or "stiffness in stick" parameter Kf as long as the frictional

shear force is less that the static frictional limit. Because of Kf, the contacting

solids behave as if connected by elastic springs that are capable or transmitting

frictional force. These "springs" represent, in a gross way, the resistance of the

9



contact surface to shear force and can be interpreted as the integrated effect

of the microscopic asperity interaction occurring in reality. This approach, which

allows relative tangential dispacements on the contact surface, is more realistic

than the Lagrange multiplier method, which assumes that all such displacements

are zero in the adherence regime. A danger exists, however; Kf must be carefully

chosen so as to produce neither unrealistic results nor numerical instability prob-

lems. This matter is discussed in the analysis section.

The slip condition is defined in ABAQUS by a frictional shear force limit similar

to equation 2. Instead of calculating Lagrange multipliers associated with slip,

ABAQUS directly imposes the frictional slip constraint on the frictional forces by

a so-called "radial return" algorithm.
38

ABAQUS regards an incremental solution as "converged" when all nonequilibrated

(residual) nodal forces resulting from the approximate nature of the piecewise linear

solution to the nonlinear problem are within some selected tolerance. This conver-

gence criterion is quite stringent and is particularly amenable to reliable solution

of contact and friction problems where the nonlinearities are related to forces.

Although finite element equations for the ABAQUS contact and friction approach

are completely developed in vectorial form,38 some simple specific examples written

in matrix form provide additional insight. Lesar of the DTNSRDC Structures Depart-

ment has prepared such developments for simple examples that parallel two cases

described for Lagrange multiplier friction in unpublished notes mentioned previously.

CONTACT CONSTRAINT/CONTINUUM ELEMENT COMPATIBILITY

Both the Lagrange multiplier contact "elements" of MARC and the hybrid Lagrange

multiplier-penalty method contact "elements" of ABAQUS are kinematic constraints

imposed at specified contact surface node pairs. Both are inherently compatible

with all displacement-based continuum solid finite elements of low interpolation

order. Such pointwise constraints are, however, incompatible with second-order

solids. Additional constraints are needed to enforce compatibility.

The compatibility difficulty can be clarified by considering the simple solid

element/contact element combinations shown in Figures 2a and 2b. In a finite ele-

ment assembly, distributed pressure loads are transmitted from one solid element to

another via equivalent nodal forces, which are calculated according to the element's

displacement interpolation functions. Low-order elements (4-node axisymmetric,
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8-node 3-D solid) will convert a uniform pressure load imposed on one face to a set

of equal compressive nodal forces on the opposite face. In Figure 2a, the contact

elements transfer these compressive forces to the rigid foundation. Second-order

elements (8-node axisymmetric, 20-node 3-D solids) convert this same uniform pres-

sure load to a set of both compressive and tensile nodal forces on the opposite

face (Figure 2b, see also reference 39, p. 223). As a result, the contact elements

at outer corners are forced to carry tensile load, an obviously unreasonable result

that leads to false predictions of gapping at these corner nodes. Similar diffi-

culties arise with tangential displacement degrees of freedom, resulting in invalid

frictional force and slip predictions. The advantages offered by higher-order solid

elements in modelling complex geometries are lost unless this compatibility problem

is remedied.

The simplest cure is to convert the quadratic displacement interpolation func-

tions for contact surface variables to linear functions. The equivalent nodal

forces generated by these linear functions will always have the same algebraic sign.

Linearization is accomplished by condensing all contact surface midside nodes out of

the equilibrium equation system, i.e., by imposing constraints of the form shown in

Figure 3:

Ub = 1/2 (Ua - Uc) (3A)z
Urb = 1/2 (Us - U,) (3B)

for axi ymmetric elements and

Ub = 1/2 (Us- U) (4A)
x  =

Ub 1/2 (Us - Uc) ( 4B)

u = 1/2 - (4C)

for three dimensional solids.

The MARC and ABAQUS programs contain features allowing easy input of such

constraints. However, the local linearization remedy possesses two undesirable

features. First, part of the advantage of high-order elements is lost. The

removal of midside nodes reduces the number of contact node points. Loss of con-

tact surface variables degrades the attainable accuracy. Second, linearization is
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strictly valid only when the contact surface is initially composed of straight

lines. In cases of curved geometry, the displacement linearization destroys the

smoothness of predicted deflection distributions fFigure 4). This error worsens

with greater element arc length and greater contact surface curvature.

The linearization constraint was the only compatibility remedy available when

the analyses reported herein were carried out. Compatibility difficulties have been

solved, however, through development of a new concept in contact and friction ele-

ments for the ABAQUS program. The basis for these new elements is a reformulation

of contact and friction constraints into a continuously interpolated form, in much

the same manner in which solid element properties are approximated. Fami'ies of

first- and second-order "interface elements" for two- and three-dimensional analy-

sis have been devised which interpolate contact and frictional forces with chosen

functions that are inherently compatible with first- or second-order two- and three-

dimensional solids. The new ABAQUS approach,3 8 ,40 requires use of solid elements

with variable numbers of nodes. The extra data preparation price for these special

elements is well worth the much improved accuracy and generality which results.

ANALYSIS

VERIFICATION OF LAGRANGE MULTIPLIER METHOD
FOR STATIC FRICTIONLESS CONTACT

The normal contact force, gapping, and friction capability of the Lagrange

multiplier method has been partially verified in previous work.2 2 The MARC program

was used to analyze the Hertzian contact of two infinitely long cylinders of equal

radius. The predicted contact pressure and internal stress distributions agreed

reasonably well with the classical solution (reference 1, pp. 414-420). An inter-

ference fit contact of two cylinders with a friction coefficient of .30 was also

analyzed. Frictional slip at all nodes resulted from imposition of a sufficient

horizontal rigid body displacement on one cylinder.
2 2

An elasticity solution of a similar fully slipped contact problem results in

an internal stress distribution that is nonsymmetric with respect to the center

plane of the contact zone. MARC predicted stress contours which were very similar

to the elasticity solution.
2 2

Additional comparisons to elasticity solutions were thought necessary, mainly

to clear up solid element/contact constraint compatibility issues but also to gain
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a feel for the behavior of contact constraints in progressively more complex

idealizations of mechanical systems. One such system of interest to the Navy's

ship power transmission community is the shrinkfit of a finite length sleeve onto

a long shaft. The principal focus of this study is on shaft and sleeve contact

problems, the first step being evaluation of MARC solutions for stresses, contact

forces, and displacements in two axisymmetric shrinkfit problems which have been

treated by elasticity methods.

Axisymmetric Rigid Sleeve and Elastic Shaft Shrinkfit

Case 1. A rigid sleeve of finite length shrunk onto a long, hollow, elastic shaft

is analyzed. The contact is frictionless and the shrinkfit is a uniform indentation

over the entire contact zone. This elasticity solution42 is more complete, in

terms of calculated results, than many shrinkfit studies. The physical situation

and important dimensions of the problem are shown in Figure 5. A schematic of

the finite element representation appears in Figure 6. Second-order (8-node) axi-

symmetric solids were used with linearization of contact surface displacements.

The shrinkfit interference is specified as a negative initial gap. A geometric

symmetry plane through the center of the contact zone is used to advantage. The

boundary conditions of the elasticity solution can only be approximated. The in-

finitely long shaft cannot be modelled without special "exponential decay" elements

(reference 39, pp. 660-664) so a finite shaft half-length eight times the contact

zone half-length was chosen. The end of the shaft is assumed to be free to expand;

as will be seen, this was an inappropriate assumption. A rotation-free boundary

cannot be directly specified at the symmetry plane since rotation degrees of freedom

are not available for continuum element3. The standard "roller" boundary condition

was used and this effectively eliminated almost all rotation. The finite element

mesh is pictured in Figure 7; the finer discretization at the edge of the contact

zone (an area of steep stress gradients) is evident.

It should be apparent that this problem could be solved without aid of contact

elements - one may well have simply input the shrinkfit as a displacement load.

This case served to resolve some side issues relevant to contact modelling. One

main thrust of this effort was to see if MARC could produce reasonable stress pre-

dictions in a fairly simple shaft contact problem. A second objective was to eval-

uate the possibility of embedding layers of linear (4-node axisymmetric) elements
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within the 8-node element mesh in the contact region. This seemed to be a viable

way of achieving contact constraint/solid element compatibility. A third objective

was to prove that contact surface linearizations are really needed in a practical

problem.

The third issue was settled quite easily by an analysis without linearization,

which produced a scalloped indentation pattern instead of the required straight

line; an obvious consequence of the algebraic sign problem with equivalent nodal

forces. A second analysis used a pure 8-node element mesh and a third analysis con-

tained 4 layers of 4-node elements as shown in Figure 8. Element mixing turned out

to be a poor option because linear elements cannot capture steep stress gradients;

a typical result being the badly discontinuous integration point stresses shown in

figure 9. The mixed mesh solution also resulted in higher computer charges. The

element mixing option seemed to be a poor performer and was discarded.

The correlation of MARC results to the findings of Hill et al.4 2 is judged to

be fair despite two difficulties. First, Hill's numerical results are for an in-

compressible material with a Poisson's ratio of 1/2. This number can be used

validly in finite element calculation only if special incompressible elements are

used. Conventional elastic elements with U - .49 were used here. Second, the effect

of infinite length may have been better represented with a fixed boundary at the

end of the shaft; a boundary free of restraint was used instead. This choice may

have produced some disagreement in radial (Figures lOa, 10b) and axial displacements

(Figure 11). The predicted trends are, however, correct.

Computed variation of the four stress components with shaft length is compared,

for several depths below the contact surface, to the Hill et al. solution in Fig-

ures 12-15. The stress curves are "by eye" interpretations of integration point

values; no attempt was made to extrapolate and/or smooth them mathematically. The

correlation appears fairly good, despite the Poisson's ratio approximation. Pre-

liminary analyses with meshes coarser than the one pictured in Figure 8 showed

severe overshoot and oscillation in radial, axial, and hoop stress beyong the edge

of the rigid sleeve. This effect was minimized by the finer mesh used to obtain

results shown in Figures 10-15.

It must be emphasized that the elasticity solution predicts singular radial

and hoop stress at the edge of the contact zone, a typical feature of contact

problems containing corner discontinuities. Finite element models require use of
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special displacement functions (reference 39, pp. 664-673) when singular stress

behavior needs to be accurately simulated. The sharp, finite peaks predicted by

MARC are not physically real and there is little hope of predicting the actual

stress state in the vicinity of a contact corner unless inelastic deformations

are allowed. At this point, it is clear that a truly realistic finite element

solution (in terms of stresses) for a contact problem with singularities involves

many complicated side issues which were pursued to some extent in the next analysis.

An error in modelling was made but not identified until much later, in that

contact elements were specified at both corner and midside node pairs. This should

have resulted in a computational error since radial displacements at midside nodes

are constrained out of the problem. Despite this, MARC reported compressive forces

at all node pairs. A contact pressure distribution can be computed by dividing

these forces by areas tributary to the node pairs. This can be done for all node

pairs (both corner and midside) individually or by allocating midside node pair

contact forces to corner nodes and using tributary areas that are twice as large

as in the first case. Both options predict roughly the same pressure distribution.

The only significant difference is that the individual node pair option leads to

an edge pressure that is twice as large as the midside node pair allocation option.

The pressure distribution shown in Figure 16 corresponds to the second (allocation)

option. This is believed to be the proper way of interpreting the computed contact

forces under the erroneous modelling conditions. Note that these pressures agree

fairly closely with the radial stresses at integration points just below the surface

(see Figure 12).

In summary, the MARC program proved itself capable of modelling the essential

features of a fairly simple shrinkfit problem, although the predicted stress pat-

terns are of questionable accuracy due to boundary condition errors, Poisson's

ratio effects, and influence of a contact pressure singularity.

Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit

Case 2. An elastic sleeve of finite length shrunk onto a long, solid elastic shaft

is analyzed.4 3 The contact is frictionless and the shrinkfit, as specified, is uni-

form; however, in reality it is nonuniform because of the elasticity of both members.

The physical situation is shown in Figure 17, and a schematic of the finite element

representation with dimensions appears in Figure 18. The modelling scheme, as far
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as boundary conditions, shrinkf it loading, etc. are concerned, is exactly as in

Case 1 except that dimensions are different and the sleeve must be modelled. The

material is taken to be steel (E - 30x10 6 psi, u -.3).

This problem is a stronger test of contact element performance. The dimensions

chosen correspond to a shrinkfit assembly subjected to fretting tests at DTNSRDC.*

This particular assembly was one of a series subjected to cyclic bending tests in

an effort to identify key structural, material, and loading variables leading to

fretting fatigue failure. (The relation of contact analysis to fretting is post-

poned to later discussion; the primary purpose here is to discuss contact modelling

performance.) This geometry does not correspond to any set of proportions con-

sidered by Conway and Farnham4 3 but the MARC results can be bracketed by two elas-

ticity solutions. A more comprehensive mathematical shrinkfit study44 produced

results which correspond only to shorter sleeves but are helpful for qualitative

comparison purposes.

The finite element mesh used here is shown in Figure 19. It became apparent in

Case 1 that a mesh convergence study in conjunction with a smoothing/extrapolation

scheme is necessary to get the best attainable estimate of stresses very close to or

at tie contact surface, subject to limitations implied by the inherent singularity.

The mesh convergence issue, although important, seemed less worthy of attention

than the stress smoothing question.

It is well known that the finite element procedure based on assumed displace-

ment fields gives continuous and smooth displacement variations but yields stresses

that are discontinuous between elements. This mathematical fact of life has been

dealt with through many semi-empirical schemes (nodal averaging, extrapolation)

for finding smoothed stress fields. Rational means of smoothing have, however,

been devised;4 5- 4 7 one such method is used here. In second-order elements (8-node

axisymmetric, 20-node solids) each stress component local to each element, when

integrated exactly, follows a parabolic form. These parabolic forms are, under

some situations, fairly continuous from element to element but tend to become badly

behaved as stress gradients steepen (Figure 20). Use of "reduced Integration"

These tests were conducted by W. Werchniak of the Ship Materials Engineering
Department of DTNSRDC. The results of the tests, herinafter called "DTNSRDC tests,"
have not been published.
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elements (in which variables are integrated inexactly with fewer integration points)

is equivalent to a least-squares smoothing of the local element stress field.
4 7

The smoothed local stresses follow a linear variation between integration points,

and smoothed stresses can be found anywhere on an element edge by extrapolation.

A fairly realistic estimate of nodal point stress can then be found after additional

extrapolation concluded by averaging (Figure 21). This method cannot be claimed as

the "best," but it proved both simple and expedient and produced reasonable results

in this study.

The MARC displacement predictions are compared, in Figures 22-23, to solutions
4 3

that bracket the finite element results in terms of nondimensional contact zone

size. Both the radial displacement and the percentage of the specified shrinkfit

prevented by the shaft fall between the elasticity solutions and follow similar

patterns. The nonuniform radial contact surface deflection predicted by MARC corre-

sponds fairly well to the uniform plane strain prediction from the classical Lame

shrinkfit solution.4 8 The shaft prevents 85-90 percent of the unrestrained sleeve

shrinkage. The finite element results would fall halfway between the bracketing

curves if the sleeve length-to-thickness parameter b/h corresponded to the b/h

considered by Conway and Farnham. The slightly lower MARC b/h lowers the percentage

shrinkfit restraint somewhat. The shaft restraint is greater at the end of the

sleeve, so this effect is less pronounced there. Note that even though local dis-

placement linearizations are in effect on the contact surface, the nodal displace-

ments could still be faired into the smooth curves of Figures 22-23. The axial

displacements on the shaft surface and inner sleeve bore are shown in Figure 24;

this agrees qualitatively with previously cited results.4 4 The sleeve bore moves

in opposition to the shaft, the shaft expanding outward and the sleeve contracting

inward.

The reduced integration/extrapolation smoothing method discussed earlier was

used to obtain estimates of radial, hoop, and axial stress on the contact surface.

The results of this effort are shown in Figures 25-27. Radial stress estimates

are computed from integration points in the sleeve as well as integration points

in the shaft. The estimates based on shaft data agree almost perfectly with the

plane strain stress prediction
48 and also fall between existing bracketing cases.

4 3

The sleeve extrapolation is in lesser agreement because the stress gradients are

much steeper there, and the mesh is not fine enough to model this gradient
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accurately. Two-thirds of the contact zone is essentially in plane strain while

interesting edge effects in the form of "wiggles" are evident (the Appendix contains

a brief discussion of why these wiggles exist). The singular stress at the sleeve

edge is evident. Although the singularity appears much less severe than in the

rigid sleeve/elastic shaft case, the stress peaks at the sleeve edge cannot be

construed as realistic predictions.

The axial stress behavior agrees qualitatively with other results.44 The

sleeve load causes shaft expansion, which is restrained somewhat by the long

shaft beyond the sleeve edge. The resulting compression is counteracted by

sleeve tension and shaft tension outside the contact zone. This effect is highly

local to the edge, however. Finally, the shear stress extrapolated to the con-

tact surface is essentially zero, as it should be for a frictionless contact.

An evaluation of contact element performance is shown in Figure 28. All

contact elements reported a closed condition and bore compressive forces. Since

this idealization also had contact elements at constrained midside node pairs, con-

tact pressures were calculated from contact forces by allocating midside node pair

forces to adjacent corner node pairs. As in Case 1, this does not seem to have

seriously affected the results. The extrapolated radial stresses should approach

these calculated contact element pressures in the limit. Figure 28 provides

proof that contact element predictions are in good agreement with extrapolated

stress, except at the edge of the contact zone. Here, contact elements show a

tendency toward a sharp stress peak while extrapolated stresses do not. This is

a fault of the solid elements rather than contact elements. The solids do not

have the requisite enhancement for modelling singular stress fields.

In summary, the finite element method of contact modelling through Lagrange

multipliers worked admirably well in two axisymmetric shrinkfit problems. Inter-

element compatibility can be attained by linearizing contact surface displacements.

Although many difficult side issues arise when accurate contact surface stresses are

desired, the problem can be solved if enough effort is devoted to mesh convergence

issues, and smoothing and extrapolation of predicted stresses. Calculated stresses

near singularities must be viewed with great caution in such problems.
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EVALUATION OF LAGRANGE MULTIPLIER METHOD
FOR 3-D STATIC FRICTIONLESS CONTACT

The methodology of contact modelling is now extended to three dimensions by

reanalysis of the axisymmetric elastic shaft/elastic sleeve problem. The primary

purposes here are to verify the linearization compatibility enforcement method for

higher order 3-D (20-node) elements and to evaluate the effect of a coarser mesh.

The modelling scheme, as far as boundary conditions, loads, and linearizations are

concerned,is much like Case 2. The shrinkfit radial interference is .001 in. at

all contact node pairs, and the material is again assumed to be steel. Reduced

integration elements are again used, and contact suface stresses are obtained by

the same extrapolation method. Two symmetry planes are utilized, as shown in Figure

29, with the X - 0, Y = 0, and Z = 0 planes fixed against X, Y, and Z displacement

respectively. This mesh is very similar to that used in an earlier, independent

attempt to analyze the DTNSRDC fretting fatigue test rig with the NASTRAN program.

The original intent was to study the response of this contact idealization to the

.0005 in. radial shrinkfit and nonsymmetric loads considered in the NASTRAN analy-

sis, but the MARC program appeared to be prohibitively expensive for this. The

NASTRAN work did not consider the frictionless axisymmetric response so the analy-

ses could not be compared, anyway.

The calculated results agree quite closely with those of the axisymmetric

model considered previously. Radial displacements predicted by the axisymmetric

and 3-D idealizations are compared in Figure 30. The linearizations did not cause
0

any significant circumferential bias; that is, radial displacements at e - 45 are
0

hardly different from those at 0 = 90 • The details of edge effect on stresses

and contact element pressures differed because of the coarser mesh near the outer

part of the contact zone. This effect is seen in Figure 31, in which smoothed and

extrapolated nodal averages of radial stress are compared for the axisymmetric and

3-D models. The stress curves shown have been faired through nodal averages based

The nonlinear effects of contact and frictional slip were treated by succes-
sive linear analyses interrupted by analyst intervention. Contact node pairs were
first constrained to move together. If contact surface stresses showed that separa-
tion or slip should be occurring, appropriate constraints were released and the
analysis redone until gaps were eliminated and shear stresses were below or close
to the frictional limit. This unpublished work was conducted by E. Schroeder of
the Computation, Mathematics and Logistics Department of DTNSRDC.
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on shaft integration point data. Although the stress decay beyond the edge of

the contact zone is much slower for the coarser 3-D mesh, the essentials of the

edge effect are captured and plane strain conditions are correctly approached.

Radial stresses based on sleeve extrapolation are different, but it appears that

better agreement could be obtained from sleeve mesh refinement; this is evident

from Figure 32. Since contact elements were erroneously specified once again at

constrained midside node pairs, a special scheme allocating these forces to corner

nodes had to be devised (Figure 33). This adjustment resulted in a reasonable

contact pressure distribution that agreed quite well with the pressure prediction

of the axisymmetric idealization (Figure 34). Not surprisingly, the edge pressures

differed substantially due to the different discretization levels. The mistake of

retaining contact elements at midside nodes was corrected in later analyses.

In summary, the 3-D analysis results agreed with the axisymmetric idealization

results, despite obvious discretization deficiencies. The contact elements per-

formed acceptably well in a 3-D model with higher-order elements when contact

surface displacement linearizations were used.

EVALUATION OF LAGRANGE MULTIPLIER METHOD FOR
STATIC CONTACTS WITH FRICTION AND SLIP

The Lagrange multiplier method of MARC produced only limited success in model-

ling frictional contact behavior. Two attempts worked reasonably well; the axisym-

metric elastic shaft/elastic sleeve shrinkfit with friction included, and a very

coarsely discretized 3-D model of an asymmetrically loaded shrinkfit. MARC failed

to produce convergent solutions to a plane stress contact, friction, and slip prob-

lem and a more elaborate model of the 3-D asymmetric shrinkfit. These four cases

are discussed in the following section.

Axisymmetric Elastic Sleeve and Elastic Shaft Shrinkfit

Case 1. The elastic sleeve/elastic shaft model is reanalyzed with a friction

coefficient of 0.15. The problem is completely linear because contact surface

shear forces are not large enough to cause slip. As a consequence, all contact

node pairs remain in adherence. The only variables affected to any discernible

extent by friction were the contact surface axial displacements, the axial stresses,

and the shear stresses. In Figures 35 and 36, results for the first two variables
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are compared to the frictionless predictions. The relative slip, or difference

between shaft and sleeve movement, is less than in the frictionless case, a physi-

cally reasonable result. Friction also converts axial stress from a localized

edge effect to an effect over almost the entire plane strain zone, a natural conse-

quence of frictional shear constraint on the contact interface. The smoothed inte-

gration point shear stresses were so drastically discontinuous from element to

element that various efforts to further smooth the integration point data could

not produce consistent results. Apparently, the shear stress gradient in the radial

direction is so steep that only contact element shear forces are numerically signi-

ficant. A frictional shear stress distribution was calculated from contact element

shear forces in the same manner as for normal contact pressures, by reallocating

midside node pairs (Figure 37). Although the trend toward zero shear at the symmetry

plane and a peak at the sleeve edge is very rough, Figure 37 looks somewhat like

the fully adhered frictional shear predictions for short sleeve/long shaft shrink-

fits.44 The lesson learned is that symmetry boundary contact node pairs should

be assigned zero friction coefficient to suppress spurious frictional shear. This

correction was made in subsequent analyses. In this case, the frictional shears

are very small compared to contact pressures; their ratio is at most of order

1/100, much less than the specified Coulomb slip limit of 0.15. Interestingly, the

result of Conway and Farnham's49 plane strain punch/slab frictional contact study

shows that the extent of slip in such a shrinkfit depends only on geometric ratios

and not on material properties. It appears that slip would occur in this problem

if the sleeve were much shorter.

2-D Friction and Slip Problem

Case 2. The previous case was particularly simple since no frictional slip occurred.

In a more thorough test of Lagrange multiplier friction theory, approximate adher-

ence and slip zones for a rigid flat-ended punch indenting a planar elastic slab

are calculated by a combined elasticity/numerical method.4 9 Conway and Farnham's

calculation showed that the adherence/slip zone size depends only on the Coulomb

friction coefficient and the punch half-width to slab depth ratio. Although the

load in Figure 2 in Conways's work appears as a concentrated force, the unknown

contact surface pressures and shears are determined by assuming a uniform indenta-

tion over the whole contact zone, a condition forced by the rigid punch. The MARC
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solutions were carried out with a Young's Modulus of 30 x 106, Poisson's ratio

of zero and a uniform contact surface indentation of .0005 in. The infinitely

long slab is approximated by a finite slab with stress-free ends that are free

to displace; the affect of a fixed end was found to be negligibly small. The

finite element mesh is shown in Figure 38; eight-node reduced integration plane

stress elements are used with the usual contact surface displacement linearizations.

The Young's Modulus and indentation were varied in some test runs but these vari-

ables had no affect on adherence/slip predictions. The MARC calculations covered

the friction coefficient range .10 < p < .60 for both a/h = 1/4 and a/h - 1/2.

The solution strategy was the same as for all previous analyses:

(i) Impose shrinkage in increment "zero," assume zero friction, resolve

contact/gapping by iteration, find normal contact forces.

(ii) Impose friction in increment "one," update normal contact forces

retaining same shrinkage or indentation, resolve adherence/slip

conditions, find tangential contact (friction) forces.

(iii) Repeat (ii) until MARC convergence criteria are satisfied.

The MARC results are summarized in Table I. The only valid results agreeing

with reference 49 were for complete adherence at the largest friction coefficients.

None of the other solutions are valid; MARC either repeated a nonconvergent solution

or ended up in a slowly convergent iteration loop which, for the lowest friction

coefficients, approached a totally invalid result (full adherence where nearly com-

plete slip is the correct answer). Efforts to locate a conceptual error or a

modelling blunder were fruitless. This failed attempt led to further investigations

of the MARC friction capability.

Primitive Model of 3-D Shaft and Sleeve Shrinkfit

with Monotonic Bending

Case 3. The MARC friction capability is now tested in a very coarsely discretized

shaft/sleeve shrinkfit subjected to nonsymmetric bending load. The shrinkfit

assembly is the same as that treated in the elastic shaft/elastic sleeve problem

considered earlier. The finite element idealization is shown, with boundary condi-

tions, in Figure 39. Note that only two symmetry planes can be utilized. The

radial shrinkfit interference is .005 in. and the bending load magnitiude is static-

ally increased from zero to 1000 in-lb. A friction coefficient p - .15 is specified.

The dimensions and load parameters pertained to a shrinkfit assembly in DTNSRDC
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tests that suffered fretting corrosion damage when subjected to a cyclic 1000 in-lb

bending load. This assembly is pictured in Figure 40. (The relation of contact

analysis to the fretting experiments is deferred to a later section. It suffices

to say at this point that adherence/slip predictions are important.)

Nodal forces equivalent to the bending load are calculated in a preliminary

MARC analysis of the shaft alone. The axial deflections corresponding to a 1000

in-lb moment are calculated from a linear elastic beam equation analysis of

the shaft. A MARC shaft model is fixed at one end with these axial displacements

imposed at the free end. The axial reaction forces reported by MARC at the fixed

end are equivalent to the desired moment. The maximum lateral deflection obtained

is very close to the simple beam theory prediction. The sign of the moment is

immaterial since the shaft is geometrically symmetric about the neutral plane of

bending.

After bending moment nodal forces were identified, MARC solutions of shaft/

sleeve interaction were carried out. A series of MARC analyses intended to find the

load incrementation scheme necessary for convergence showed that nine equal bending

moment increments were needed. Convergence could not be obtained for three or six

increments. The finite element model is so coarse that calculated stresses have

little meaning, but deflections and the frictional behavior of the contact surface

are of interest. MARC predicted a maximum laterial shaft deflection of about .00221

in., which agreed closely with .00224 in. predicted by an approximate stepped beam

deflection formula.50 Deflections in the plane of bending showed that the assembly

bends as a classical thick beam with noticable shear deflection in the sleeve.

The slip and adherence history is shown schematically in Figure 41. The

shrinkfit is slightly relieved on one side and slightly increased on the diametri-

cally opposed side in the plane of bending, a reasonable result. No gapping occurs

for any load; the bending moment is not great enough to relieve the initial shrink-

fit interference. The ratios of frictional force to normal force and the percentage

of shrinkfit restrained by the shaft which are attained at each contact surface

node pair are summarized in Table 2 for the equilibrated shrinkfit condition and

various levels of bending moment. Frictional slip begins soon after bending load

is applied, and the zone of slip spreads somewhat with further application of

load. Slip is confined to the upper and lower edges of the contact zone in the

plane of bending. This behavior is not unexpected and the MARC friction theory

seems to have worked well in this particular case.
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Improved Model of 3-D Shaft and Sleeve Shrinkfit
with Monotonic Bending

Case 4. The same modelling techniques used successfully in Case 3 are now applied

to the same shaft/sleeve interaction problem with improved discretization in the

radial and axial directions. The new finite element mesh is shown in Figure 42.

All contact surface displacements are linearized, and contact elements link only

the corner node pairs.

The idealization is well-behaved for zero friction and solution for normal

contact force for the bending moment range 0-1000 in-lb was easily obtained. The

friction analyses failed, however, to approach a reasonable result. All attempts

to find load increments small enough for convergence failed due to slow convergence,

divergence, or, more commonly, "ping-pong" divergence. These problems arose when

slip initiated at one or more contact surface node pairs. Load increments as

small as 1/216 of maximum load (4.63 in-lb) managed to isolate the slip of one

node pair at a time but did not eliminate "ping-ponging," which occurred for steps

of 1/9, 1/18, 1/36 and 1/72 of maximum load as well. Apparently, at initial slip

the first estimates of friction-force to current normal force ratio are so much

greater than the coefficient of friction that convergence is impossible no matter

how small the load increment. In one interesting analysis, for example, one node

pair surpasses the Coulomb limit during a load increment of 4.63 in-lb (1/216 maxi-

mum load). MARC wound up in a "ping-pong" loop with the tangential-to-normal force

ratio changing from .103 to .547 and back to .103, etc., never coming close enough

to the actual limiting value of 0.15.

A thorough check of input by plotting and line-by-line scanning of input data

failed to reveal errors or inconsistencies. Consultation with MARC users and devel-

opers did not reveal any faults in the problem definition. The unsatisfactory

performance of MARC in this case and in the 2-D punch problem prompted consideration

of an alternative computer code for frictional adherence/slip behavior. At this

time, the ABAQUS code became available for in-house use. It appeared to be worth-

while to try the ABAQUS program, which contains a contact and friction capability.

* *"Ping-Pong" divergence can occur when an iterative nonlinear equation solution
process fails to home in on a unique equilbrium state at the end of a load increment.

In the particular cases encountered here, the iterations bounced from one totally
different "solution" to another, neither of which fully satisfied force equilibrium
or contact constraints.
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The contact algorithms of ABAQUS make use of the same Lagrange multiplier approach

used successfully in MARC, and the friction agorithms are based on a stiffness

method.

VERIFICATION AND EVALUATION OF FRICTIONAL
STIFFNESS METHOD FOR STATIC FRICTIONAL
ADHERENCE AND SLIP PROBLEMS

The ABAQUS program was applied to the 2-D mixed adherence/slip problem that

MARC failed to handle and to the coarsely discretized shaft/sleeve shrinkfit, bend-

ing, and friction problem. It produced satisfactory solutions in both cases, which

are described in the following section.

2-D Friction and Slip Problem

Case 1. The mixed adherence/slip contact problem49 is modelled by ABAQUS in much

the same way as in MARC. Only the a/h = 1/2 case is considered; the mesh is

identical to that seen in Figure 38. The specified indentation, material proper-

ties, and dimensions are the same as used in MARC; the same elements (8-node

reduced integration plane stress) are used along with the same contact surface

displacement linearizations. The one new item of input is the "stiffness in stick"

or "frictional stiffness," a parameter discussed earlier in the section on stiffness

approaches to contact. This can be interpreted as the ratio of the local contact

surface shear force to the local contact surface tangential displacement. However,

because this parameter is problem dependent, the rationale for its estimation is

not at first obvious. The friction theory's developer says that the proper stiff-

ness to use is the highest number for which a convergent solution is possible.5 1

The invalid MARC results for this problem provided ratios of friction force to

tangential contact displacement and, with no other guidance available, sufficed

as a basis for a parametric study. For p = 0.35 these ratios fell within the range

3 x 106 < Kf < 5 x 107 when all contact node pairs are considered. The results

of a successful ABAQUS parametric study based on these numbers is shown in Table

3 for P - 0.35 and Table 4 for H = 0.80. The upper limit on frictional stiffness

Kf is very sharply defined by a convergence limit while the lowest stiffness results

in a total adherence condition. Intermediate values produce mixed adherence/slip

solutions. Total adherence is not reasonable for W - 0.35, hence the lower Kf can
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be discarded. For p = 0.80, total adherence appears to be practically the only

possible solution, which is somewhat consistent wi.h previously cited findings.
4 9

Additional mesh refinement and trials are needed to obtain the optimum Kf, but

this is hardly worth the effort. Note that for P - 0.80, the convergence limit is

again sharply defined.

From the above two studies, it appears that Kf = 1.1 x 107 is adequate; further

ABAQUS simulations were carried out with this chosen stiffness parameter for other

friction coefficients. Resulting ratios of contact forces are shown in Table 5, and

the ABAQUS adherence zone predictions are compared to previously cited research
4 9

in Figure 43. Although the results are rather approximate because of discretiza-

tion limitations and the inexactness of Kf, the correct trends are predicted quite

adequately.

The stiffness approach to friction modelling requires a frictional stiffness Kf,

which may be estimated if some guidance is already available. The diffiulty

in the stiffness method is to determine a physically reasonable Kf in a completely

unique problem. This issue is addressed in the next case.

Primitive Model of 3-D Shaft and Sleeve
Shrinkfit with Monotonic Bending

Case 2. The ABAQUS friction capability is now applied to the coarsely discretized

3-D shaft/sleeve problem shown in Figure 39. The mesh, element type, material

properties, and loading (.005 in. unrestrained sleeve shrinkage followed by 1000

in-lb bending load) are the same as before. All contact surface displacements are

restricted to linear variations. The friction coefficient is fixed at W = 0.15,

and frictional stiffness is varied in a parametric study to find reasonable Kf

limits for this particular problem.

A preliminary analysis of frictionless axisymmetric contact without bending

produced normal contact forces within 3.5% of the MARC predictions. The ABAQUS

model's maxinum lateral displacement was almost Identicsl to the MARC value. Subse-

quent analysis focused on the frictional stiffness issue.

The behavior of this system with respect to differing Kf is much more complex

than in the 2-D rigid punch/elastic slab problem. All contact nodes in the punch

problem bear increasing normal forces as the indentation increases. In the 3-D

problem, however, some contact node pairs carry increasing normal force while other
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node pairs are relieved of load as bending proceeds. Friction forces tend to

increase faster than normal forces at points bearing increasing normal load, and

normal forces decrease more slowly than friction forces at points where normal

load is shed. As a result, slip occurs at both locations. The friction response

to this nonproportional loading is clearly sensitive to frictional stiffness choice

in some unknown way.

A successful MARC solution to the 3-D problem was available as guidance for

the Kf choice. "Frictional stiffnesses" were taken to be the ratio of friction

force to relative tangential displacement from the MARC results for the frictional

shrinkfit with no bending. All such computed "stiffnesses" fell in the range

1 x 104 < Kf < 5 x 104. A series of ABAQUS analyses for this range of frictional

stiffness at every contact node pair was compared to the MARC results for all

loads up to the maximum bending load. A partial comparison of frictional/normal

force ratios in Table 6 shows that the solutions compare well initially but diverge

as bending load increases. Additional ABAQUS runs at higher Kf showed that the

force ratios agreed with MARC results only at higher Kf's, and the Kf's necessary

for good correspondence increased with the bending load. An example for one node

pair is shown in Figure 44. The MARC approach effectively determines the changing

contact surface frictional stiffnesses as load increases; this stiffness apparently

changes over orders of magnitude in a highly nonlinear manner. The ABAQUS approach

enforces a constant input stiffness. If the guess is too low, as in this case,

frictional slip will not be predicted. If the stiffness is too high, slip will

occur at too small a relative displacement. The results shown in Table 6 occurred

because the initial MARC stiffnesses are too small to predict the slip behavior

that occurs as the assembly is bent.

Several preliminary ABAQUS analyses for order(s) of magnitude variations in Kf

were needed over the entire range of loads. The results of a lengthy parametric

study are partially summarized in Figure 45. ABAQUS predicts practically all pos-

sible adherence/slip combinations within the range 1 x 105 < Kf < 1 x 107. Again,

the lower limit is a complete adherence solution. The higher extreme is certainly

a convergence limit, as found in the 2-D punch/slab problem, but this particular

limit was not determined.

The friction force response of selected contact node pairs for various choices

of frictional stiffness is shown, for adherence conditions, in Figure 46 and for
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mixed adherence/slip in Figure 47. The simultaneous loading and unloading of con-

tact node pairs and the effect of slip on subsequent frictional response is clearly

seen. The interaction of friction and contact forces is indeed an interesting and

complex phenomenon.

The load versus calculated relative tangential displacement at an adhering con-

tact node pair and a slipped node pair for Kf = 2 x 105 is shown in Figure 48. The

nonlinear response to monotonic load is easily explained if the correspondence of

the stiffness friction formulation to the White-Besseling model of plasticity
5 2' 53

is recognized. The stiffness theory characterizes the frictional response of an

individual contact node pair by two fixed parameters; a "stiffness in stick," or

frictional stiffness, and a coefficient of friction. The friction coefficient de-

fines a normal force-dependent limit on frictional force at each node pair. The

frictional stiffness is analagous to the elastic modulus and the limiting frictional

force corresponds to the yield stress in the elastic-perfectly plastic model of

metal plasticity. In the White-Besseling concept, a plastic material "element"

exhibiting strain-hardening is characterized by a suitably chosen collection of

elastic-perfectly plastic "subelements." The gross "element," composed of many sub-

elements, will exhibit strain-hardening when subject to monotonically increasing

load. In the ABAQUS friction theory, the contact surface is characterized by a

suitably chosen collection of frictional node pairs, each with a force-deformation

law analogous to an elastic-perfectly-plastic White-Besseling "subelement." The

nonlinear hardening response seen in Figure 48 is, therefore, not surprising and

can be interpreted to demonstrate a "contained plastic flow" of sorts, the "flow"

being confined to the contact surface. An interesting, simple contact surface

stiffness model explaining experimentally observed54 dissipative behavior in mono-

tonically and cyclically loaded contacts is found in a journal article by Burdekin,

et al. 5 5 Although the authors utilize nonlinear normal and frictional stiffnesses,

they mistakenly characterize the phenomena as being "elastic."

The friction theory is complicated by the fact that the Coulomb limit depends

on the current normal force. It is clear, however, that the frictional response

at any contact node pair depends on both the normal force and adherence/slip condi-

tions existing elsewhere on the surface. The strong resemblance of this friction

behavior under monotonic loading to contained plastic flow at small strains prompts

28



the question of whether ABAQUS can predict dissipative frictional behavior under

fully reversed cyclic loading. This is the focus of further analyses.

The ABAQUS contact/friction model works fairly reliably and is capable of pro-

ducing physically reasonable results. The calculations are, however, only as good

as the chosen frictional stiffness. The above parametric study identified a reason-

able Kf range which can only be justified by engineering judgment although one

simple theory5 5 implies that Kf reflects some measure of contact surface asperity

roughness. The lowest Kf for which one node pair slipped in the entire range of

loading is 2 x 105, and the lowest Kf for which three node pairs slipped during the

shrinkfit is 6 x 105 . The low stiffness is easily justifiable since it is quite

near the full adherence limit. The high stiffness is more subjective since it is

at least two orders of magnitude less than the limiting Kf for convergence, which

was never determined here. These two limits were used in a subsequent study of

this coarsely discretized system's reponse to cyclic bending loads.

APPLICATION OF FRICTIONAL STIFFNESS METHOD
TO A COMPLEX 3-D FRETTING CORROSION
AND FRETTING FATIGUE PROBLEM

The previously discussed MARC analyses have verified the Lagrange multiplier

method for contact problems, and the ABAQUS analyses have verified the stiffness

approach for friction and slip. These contact analysis capabilities have been

extended to 3-D problems, and the calculation of stresses near contact surfaces has

been proven possible, with some limitations due to stress singularities. The veri-

fied and extended ABAQUS finite element capability is now applied to fretting corro-

sion and fretting fatigue, a complex and difficult class of mechanical engineering

problems.

Fretting corrosion is a type of surface damage that results from small periodic

relative motions between metal parts that are held together by clamping pressure.

Such conditions exist in many machine components that are not intended to undergo

relative movement, e.g. bolted or riveted connections, and shrinkfitted shaft/sleeve

assemblies. Fretting corrosion can drastically reduce the fatigue strength of

machine parts. If it is severe enough, fretting corrosion leads to surface and/or

near-surface fatigue crack formation, which can ultimately result in crack propaga-

tion Into the bulk material and subsequent failure by fracture. Fretting corrosion
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damage mechanisms, from a metallurgical and tribological point of view, is fully

discussed by Duquette.5 6 Both this source56 and Nishioka, et al. 57 include lists

of references on fretting corrosion tests made over the past 40 years.

The study of tribological and material influences on fretting fatigue is very

important and constitutes the bulk of related work to date. Experimental evidence

shows, however, that fretting fatigue in machine components also depends on macro-

scopic factors, some of which can be quantified by continuum (structural) analysis.

The relative slip amplitude at the edge of the contact surface in pressfitted hub/

axle assemblies loaded in periodic (rotating) bending was measured experimentally

and reported upon.57 These experiments showed that the degree of relative slip

depends on geometric characteristics (axle diameter vs. hub diameter, hub overhang

vs. no overhang). Relative slip increased with increasing shear force and nominal

bending stress, implying a dependence on external loads. Relative slip quickly

assumed a steady-state variation which persisted for perhaps 1000 cycles but then

slowly decreased in amplitude as wear processes began. The slip was found to be

independent of the rapidity of cycling and the material's surface hardness. The

relation between nominal bending stress and relative slip took the form of a hys-

teresis loop, indicating the dissipative nature of the friction process. The dis-

sipated energy is partly conducted and/or radiated away from the contact surface

as heat. The remaining energy is dissipated in plastic deformation and crack forma-

tion local to the contact surface.

The DTNSRDC experiments attempted to define the effects of contact interfer-

ence, sleeve diameter, bending load amplitude, and number of bending cycles on

fretting corrosion damage and fretting fatigue failure in shrunkfit shaft/sleeve

assemblies loaded in rotating bending. Fretting damage, when it occurred, was

localized to the edge of the shaft/sleeve contact zone. Fretting corrosion showed

very little dependence on duration of test or degree of shrinkfit interference.

Although fretting damage tended to increase somewhat for larger-diameter sleeves,

the extent of damage depended more strongly on bending moment amplitude than any

other variable; fretting damage increasing with greater bending moment. The most

highly loaded specimens eventually failed by fracture.

Both the DTNSRDC tests and the study of Nlshioka et al. 57 indicate, to varying

degrees, that fretting damage and relative slip are dependent upon geometry and

external loads. These variables can be easily accomodated in a continuum structural
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analysis, particularly a finite element method that handles contact and friction.

Quasistatic analysis is appropriate since relative slips appear to be insensitive

to the rapidity of loading, and the extent of fretting damage depends only slightly

on the number of load cycles. The previously observed 57 change of relative slip

with cycles is due to wear effects which cannot yet be modelled by finite elements.

The dependence of fretting on loads and geometry implies that the stresses

on the contact surface are influential variables. This study has shown that finite

element contact analysis methods can be used to determine these stresses. However,

sharp contact zone edges cause mathematical singularities which complicate the

stress field considerably. If the location of contact surface cracking is known

(as it is here) and the degree of initial crack can be characterized, linear elastic

fracture mechanics concepts can be used to determine stress intensity factors.

These factors can, in turn, be correlated to crack growth rate. Such an approach

has been taken in a simple analysis where the stressing is caused by both general

structural loading and by local shearing contact stresses.58 A similar approach

is taken for a cracked sheet subjected to predefined normal and shearing "fretting

forces." 59 In any case a suitable means of stress singularity representation is

required to model the singular stress field due to special corner geometries or

existing cracks. The difficulties with singularities detracts somewhat from the

utility of correlating calculated contact surface stresses to fretting fatigue

failure.

Additional analytical refinements beyond the scope of this study are required

to predict fretting fatigue failure; however, the contact analysis method may be

useful in predicting fretting corrosion damage. The finite element method is

capable of predicting both the location and extent of frictional slip in a mono-

tonically loaded static contact. The method should also be capable of predicting

the tangential contact force vs. slip response in cyclic loading. If such dissi-

pative behavior (the referenced hysteresis loops57 ) can be predicted, then the

energy converted into plastic deformation and heat generation local to the contact

surface can be calculated. The damaging energy is that which cannot be conducted

and/or radiated away as heat. Since experimental evidence shows that the fretting

process is time-independent (not accounting for wear effects on slip amplitude),

a quasistatic analysis seems feasible. Two series of shaft/sleeve analyses under

cyclic bending conditions have been completed. It is important to realize that
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cyclic bending is not the same mode of loading as the rotating bending conditions

in the DTNSRDC tests; this fact is clarified in Figure 49. The finite element

predictions quoted in the following sections do not correspond to the real case

because load is removed from all points simultaneously in cyclic bending. A zero-

loading condition does not exist in the actual experimental mode of rotating bend-

ing. Rotating bending requires a full three dimensional analysis, however, without

symmetry planes of any kind. This was judged to involve too much sophistication

and expense at this point since the effects of mesh refinement and the validity

of an assumed frictional stiffness with respect to load level were not sufficiently

clear. For these reasons, efforts were confined to the simpler cyclic bending case.

All ABAQUS analyses discussed in the remainder of this report concern steel shrink-

fit assemblies (E = 30 x 106 psi, U - .3) with an assumed friction coefficient

of 0.15.

Primitive Model of 3-D Shaft and Sleeve Shrinkfit with Cyclic Bending

Case 1. The response of the coarsely discretized 3-D shrinkfit model to cyclic

bending is briefly discussed. Although the predictions for a more finely discre-

tized model are more important, these results demonstrate that the choice of fric-

tional stiffness is important in cyclic friction analysis by the ABAQUS program.

The ABAQUS shrinkfit and bending idealizations for frictional stiffnesses

Kf - 2 x 105 and 6 x 105 were subjected to several fully reversed bending load

cycles using the restart features of ABAQUS. The bending load amplitude was 1000

in-lb. A steady-state condition was reached for both stiffnesses after only a

few cycles. The predicted sequence of slip events, normal stress vs. friction

stress, friction stress vs. relative tangential displacement, and relative tangen-

tial displacement vs. bending load are shown, at the most crucial node pairs,

for Kf - 2 x 105 in Figures 50-53. Corresponding predictions for the Kf - 6 x 105

appear in Figures 54-57.

A fully linear limit cycle is approached for the lower frictional stiffness.

All slip eventually ceases and the assembly shakes down to a fully adhered state

within just two cycles. The contact surface "hardens" very quickly with this

particular combination of variables. The behavior of the higher stiffness system

is fundamentally different in that a steady-state slipping cycle is reached after

an initial transient. The contact surface does not harden sufficiently to prevent
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a steady-state hysteresis loop in which the work done on the system by the bending

is dissipated partially by repeated frictional slipping. The behavior for the

higher stiffness is much more interesting and probably more representative of fre-

ting conditions. The higher Kf behavior is more fully investigated in a shrinkfit

model with improved discretization.

Irnroved Model of 3-D Shaft and Sleeve Shrinkfit
with Cyclic Bending

Case 2. ABAQUS analysis of the more finely discretized 3-D shrinkfit model in

Figure 43 showed that the major differences in steady-state slip predictions

observed in the coarsely discretized model (fully adhered vs. mixed adherence/slip

limit cycles) are due more to finite element discretization than to the frictional

stiffness. This point is clarified in Figure 58. This figure shows that the fric-

tional stiffnesses producing steady-state, fully adhered and partially adhered

conditions in the coarse model (2 x 105 and 6 x 105, respectively) do not predict

fundamentally different slip behaviors when the finite element mesh is made finer

in the radial and axial directions. Clearly then, when the frictional stiffness is

applied to analyze these complex frictional systems, simultaneous mesh convergence

and parametric frictional stiffness studies are needed.

The steady-state mixed adherence/slip conditions depend heavily on the bending

moment, as shown in Figure 59. In all cases frictional slip was principally con-

fined to the three percent of contact zone length closest to the sleeve edge;

however, the results for 1000 in-lb., 666-2/3 in-lb. and 333-1/3 in-lb. maximum

bending moment magnitudes indicate that frictional slip becomes more severe and

widespread as bending moment increases, a result qualitatively in agreement with

the DTNSRDC tests. A rough quantitative comparison of theory and experiment in

Table 7 shows that the combination of discretization (36 3-D elements, 15 contact

node pairs), frictional stiffness (Kf - 6 x 105), and frictional coefficient

( p - 0.15) used in the analyses may have produced pessimistic slip predictions.

This illustrates the not unsurmountable difficulty in predicting complex fric-

tional behavior in mechanical systems by a method that requires knowledge of a

contact surface stiffness measure that only grossly represents many influential

tribological variables.
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Figures 60-62 show the relation of frictional shear stress to normal contact

stress at the two most highly loaded node pairs for the three bending load levels.

The stress behavior at these two points approaches steady-state loops that are

identical to each other but 180 deg out of phase. The loops trace progressively

smaller excursions in the normal force direction as bending load decreases. In all

cases, the steady state is quickly reached after a brief transient period. The

decrease in cycle duration spent under slip conditions with decrease in bending

load is clearly evident.

The predicted relative tangential contact surface displacements vs. frictional

shear stress are shown for 1000 in-lb, 666 2/3 in-lb, and 333 1/3 in-lb moments in

Figures 63-65. The displacement vs. stress behavior at the two most highly loaded

node pairs approaches hysteresis loops that are identical in shape but 180 deg out

of phase. The steady-state loops are quickly approached after brief transients

and enclose a larger "area" as bending moment increases. Not unexpectedly, the

frictional energy dissipation represented by this hysteretic behavior becomes much

more pronounced as bending load increases. The energy dissipated at one node

pair per cycle can be determined easily. The shear stress axis can be converted to

a force axis by a simple multiplicative factor, and the area enclosed by a single

steady-state hysteresis loop can then be calculated. The total energy dissipated

on the contact surface per cycle is found by adding the steady-state hysteresis

loop areas for all slipping node pairs.

A side issue not explored in this analysis is the effect of shrinkfitting stage

analysis method on subsequent response to mechanical loading. All analyses have

treated the shrinkfitting as a purely mechanical loading, while in reality the pro-

cess is both mechanical and thermal. (The sleeve is heated to high temperature and

is slipped onto the shaft while thermally expanded. The sleeve shrinks tightly onto

the shaft as it cools). This thermal process can be simulated with ABAQUS and will

certainly produce initial shrinkfitting and transient cycling response that differs

from that presented here. It is believed, however, that the thermomechanical option

of shrinkfit modelling and the purely mechanical approach used here will produce

similar steady-state frictional behavior.
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APPLICATION OF LAGRANGE MULTIPLIER METHOD TO CONTACT/GAP PROBLEMS

The mixed contact/gap analysis capability of ABAQUS has not been exercised in

this work. It is currently being applied, in a separate project, to analysis of the

interaction of controllable pitch propeller blade components. The ABAQUS results

obtained to date seem reasonable and are computed quite straightforwardly as long

as contact surface linearization constraints are used. The results of these efforts

will be published in a separate DTNSRDC technical memorandum.

POSSIBLE IMPROVEMENTS

IMPROVED CONTACT ELEMENTS

The aforementioned experiences in contact analysis revealed a need for contact

restraints that are mathematically compatible with higher-order finite elements.

Although this difficulty was circumvented here by contact surface displacement

linearizations, such a mathematical artifice detracts from solution accuracy. This

problem can be solved once and for all by "interface elements" based on assumed

contact pressure and contact surface displacement interpolations that are mathemati-

cally compatible with 2-D and 3-D higher-order solids.

A family of such elements has been derived for use in conjunction with first-

and second-order solids.4 0 These interface elements are based on the concept that

the contact surface is a 2-D, geometrically continuous "sheet" of sorts over which

pressures and displacements also vary continuously. The conventional isoparametric

interpolation method (reference 39, Chapter 8) is used in conjunction with trapezoi-

dal integration over the surface in the first-order case and Simpson Rule integration

in the second-order case. In the conventional direct stiffness equation assembly

approach, the interpolated interface elements possess elemental contact force vec-

tors that combine to form the global contact force vector. In contrast, pointwise

contact node pair constraints possess individual contact force components. Unlike

the independent forces of the pointwise contact element approach, the elemental

contact force vectors are inherently compatible with both first- and second-order

solids. Interface element "strains" are defined as the relative displacements

between contact node pairs. These displacements are monitored for contact and gap-

ping. The active node pairs in contact are imposed via the Lagrange multiplier

technique while inactive (gapping) node pairs are determined by iteration.
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In summary, the definition of the global contact force vector is the one major

difference between this new interface approach and the pointwise contact element

method used herein. Additional details on the interpolated interface theory and

results produced in some simple test cases with the ABAQUS code are given in refer-

ence 38. The interpolated interface method performs quite well in simple 2-D and

3-D Hertzian contact test problems.

IMPROVED FRICTION MODELLING

These experiences in friction analysis have shown that the frictional stiff-

ness method is computationally useful and is capable of producing reasonable

results. It is not always easy to choose a proper frictional stiffness. The

widely varying results produced by different finite element discretizations with

the same frictional stiffness suggest that frictional stiffness is a problem-

dependent parameter as much as a material property parameter. In addition, the

relation of this stiffness to tribological conditions is vague and has physical

meaning only in the sense of the resistance of surface asperities in shear. An

effort has been made to identify a promising new approach for metallic friction

based on experimentally definable variables that better reflect the resistance of

contact surfaces to deformation. One such method38 is briefly described in the

following paragraphs.

This new approach to contact is called "Critical State Theory" (CST) which

refers to a mathematical model for soil mechanics from which it borrows some con-

cepts. CST abandons the mathematically convenient Lagrange multiplier artifice for

normal contact in favor of a nonlinear normal pressure-normal strain relation.

This relation produces experimentally observed "hardening" and "softening" behavior

through a pressure-dependent nonlinear stiffness. The gradual approach of contact

surface asperities during loading and the gradual separation of asperities in un-

loading is well represented by the mathematical "hardening" and "softening" behavior.

The stiffness in shear is represented by a conventional shear modulus which utilizes

the nonlinear normal pressure-normal strain relationship instead of the usual elas-

tic modulus. The shear behavior is thus coupled to the normal behavior and reflects

a hardening shear stiffness with increasing normal pressure. This relation repre-

sents, in a gross way, the increasing asperity resistance to shear loading that

occurs with increasing clamping pressure. Since they are valid in the sub-slip
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range, where all strains are recoverable, the normal and shear stiffnesses just

discussed are nonlinear but elastic. Both of these stiffness formulations are thus

meaningful in a tribological sense and are explicitly defined in terms of experimen-

tally obtainable variables.

The CST approach for frictional slip strongly resembles classical strain-

hardening flow theories of plasticity. Some features of plasticity theories are

assumed in the definition of slip displacements; namely, strain rate decompositioi,

associated flow, normality rule, and the yield surface concept. The hardening rule

is a form of combined Isotropic and kinematic hardening in which the size and orien-

tation of the "yield" (in this case, slip) surface depends on the current relative

tangential strain. The slip surface represents a critical intensity of contact

surface shear and normal forces at which slip initiates and continues. The extent

to which the classical Coulomb friction limit (analagous to perfectly plastic flow)

is reached depends on the hardening parameters. The "plastic strain" components,

calculated by conventional normality and associated flow assumptions, represent

nonrecoverable contact surface displacements that occur under slipping conditions.

These "plastic strains" are, in a sense, tribologically real because slip occurs

when contact asperities are grossly (plastically) deformed and forced over one

another by shear loads. The geometric scale of this predicted frictional plasticity

is correctly confined to the contact surface. The CST frictional slip formulation

is also capable of producing the energy dissipation by hysteresis observed in

cyclically loaded frictional systems.

In summary, the CST concept3 8 defines contact surface behavior in meaningful

tribological terms rather than relying on mathematical conveniences. This theory

is one step toward a rational description of interface behavior in "constitutive

equation" terms and shows promise as a basis for further generalization toward

certain kinds of lubricated contacts.

SUMMARY AND CONCLUSIONS

This work has verified, extended, and improved finite element methods for solu-

tion of several classes of dry contact problems in solid mechanics. The class of

problems treated can be categorized as follows:

(1) Dry contact, no lubrication

(2) Static contact, no dynamic impact effects
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(3) Monotonically and quasi-static cyclically loaded contacts

(4) Elastic material behavior

(5) Small displacements and strains

(6) Frictionless contacts and contacts with Coulomb friction under

both adherence and mixed slip adherence conditions

(7) Full contact (Mixed contact gapping has been treated in a separate

effort)

The contact analysis capabilities of the MARC and ABAQUS programs have been

verified by comparison of elasticity solutions to computed responses of contacts

with and without friction. The Lagrange multiplier method of MARC and ABAQUS han-

dles the normal contact problem quite satisfactorily. The stiffness method is best

suited to the friction problem. Because the ABAQUS program follows these two

approaches, it is recommended as an analytical tool for unlubricated contacts.

The existing ABAQUS capability has been extended to modelling with higher-order

elements and has been applied to problems that must be posed in three dimensions.

The current method of modelling with higher-order elements is somewhat deficient

because of limitations imposed by necessary compatibility restraints. The new con-

tact modelling concept of reference 41 could not be evaluated in this work, but

preliminary tests have shown that it will effectively eliminate contact constraint/

higher-order solid compatibility difficulties.

ABAQUS has been applied to a 3-D contact problem which represents most features

of a fretting corrosion and fretting fatigue test apparatus. The results obtained

for this study demonstrate that the complex contact and friction interaction occurring

under fretting conditions can be modelled mathematically. The contact surface energy

dissipation and the portion of dissipated energy leading to surface damage can be

calculated by finite element methods.

Despite its limitations, this work has verified advanced methods for analyzing

unlubricated mechanical contacts and has extended the analysis capability to a level

that is useful in complex practical problems.

TOPICS FOR FUTURE WORK

This experience has demonstrated that there are many "side issues" peculiar

to certain dry contact problems which can only be resolved after prolonged effort.
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These side issues were not thoroughly treated in this work, but they can be con-

sidered as open topics worthy of further research.

(1) If singular points exist in the stress field due to sharp corners or

cracks, computed stresses will not be realistic in the vicinity of the corner or

crack unless the singularity is explicitly modelled. Such stress concentrations

may also cause material nonlinearities in the form of plasticity. All of this will

have some effect on contact surface behavior.

(2) The effect of element size and disposition on the convergence of displace-

ment and stress predictions toward some "actual" result should always be examined

in finite element treatments of nonlinear problems. This issue could not be fully

treated in the many test and evaluation cases of this study. Although 20-node

solids are monotonically convergent in themselves, convergence of an entire solid

element-contact element system in the presence of singularities (if any), contact

surface constraints (if any), and plasticity (if any) is not guaranteed and should

be checked.

(3) Matters are not simple if stresses very near the contact surface are of

interest. Extrapolation of integration point stresses proved useful in this study,

but there Is no single foolproof way to interpret the discontinuous stress fields

that naturally occur in displacement-based finite elements. Alternate means of cal-

culating surface stress should be evaluated. One useful alternative may be hybrid

finite elements, which are mathematically constructed to predict continuous stress

fields. Hybrid elements also converge faster than displacement-based elements in

60zones adjacent to a singularity. Some very recent contact analysis work in this

direction has been accomplished.
6 1

A more fundamental problem involves unlubricated interface modelling. The con-

tact and friction behavior of interfaces has been simulated by necessarily simple

mathematical conveniences (Lagrange multipliers and/or constraint equations), but

such models are somewhat artificial. In many cases, such approximate models can

capture the essentials of contact interface behavior, but this holds true only in

cases where friction stresses are limited by the Coulomb theory. In particular,

although the stiffness approach to friction is computationally successful, a fric-

tional stiffness characteristic that in some way reflects surface roughness is

required. The computed results will depend on the chosen stiffness, and there seems

to be no clear way of correlating this number to actual surface characteristics.
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There is a need for experimentally definable contact surface friction models, ex-

pressed in terms of finite element constitutive equations, that more directly

account for surface roughness. Some possible first steps in this direction have

been discussed.
38 '6 2

The finite element method is a very powerful analytical tool and offers promise

for treatment of even more complex interface problems in machines and machine com-

ponents. An example of some advanced dry contact work is a finite element simula-

tion of transient thermoelastic contact with wear effects.6 3 Lubricated contacts

are another important class of problem; much work has been done in developing

finite element methods to determine pressure distributions and load capacities for

complex bearings operating in fully lubricated conditions.64 -6 8  For highly loaded

bearings or certain bearing pad materials, the bearing pad deformations are as

important an effect as the lubricant behavior. Finite element methods have been

used to calculate pressures, film thickness distributions, and maximum load capaci-

ties of bearings under elastohydrodynamic conditions.6 9- 7 1 Finally, finite ele-

ments have been applied to lubricated contacts in which thermal effects are

important.7 2 It appears that well-defined numerical methods exist for analysis

of geometrically complex, fully lubricated contacts for a variEty of conditions.

Although lubricated contacts are very important in naval machinery applications,

such problems require analytical approaches which in no way resemble those con-

sidered herein for dry contact. Finite element treatment of such problems would

require completely new efforts.

Finally, the problem of partially lubricated contacts (boundary lubrication)

is much more complex than dry or fully lubricated cases. None of the dry contact

methods considered here or the lubricated contact approaches listed above are appro-

priate. Application of finite elements to boundary lubrication first requires a

statement of the problem in fundamental mathematical terms. Such mathematical state-

ments must reflect observed relationships among important variables, which can only

be defined through experimental effort. Even so, finite elements may not be the

most effective technique for analyzing boundary lubrication problems.
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Figure 12 - Elastic Shaft/Rigid Sleeve, Radial Stresses Near Contact Surface/
and in Shaft Interior
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Figure 13 - Elastic Shaft/Rigid Sleeve, Hoop Stresses Near Contact
Surface and in Shaft Interior
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Figure 13 (Continued)
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Figure 46 -Coarse 3-D Shrinkf it with Friction and Bending, ABAQUS Contact Force

Ratio Predictions in Adherence Regime for Various Frictional Stiffnesses
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Figure 54a - Slip History at Node Pair 1
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Figure 54b - Slip History at Node Pair 3
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Figure 54c - Slip History at Node Pair 2
A

r "PAIPARR AIR -

PAIR 2 
PAIR 21 

PR

SECTION ADB

Figure 54 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Slip Events
at Crucial Locations for Kf - 6 x 105
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Figure 55a -Response of Node Pair 1 (Fig. 50)
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Figure 55b - Response of Node Pair 2 (Fig. 50)

Figure 55 - Coarse 3-D Shrinkfit with Friction and Bending, Cyclic Shear Versus

Normal Stress at Crucial Locations for K - 6 x 105
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Figure 56a -Response of Node Pair 1 (Fig. 50)
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Figure 56b - Response of Node Pair 2 (Fig. 50)

Figure 56 -Coarse 3-D Shrinkf it with Friction and Bending Cyclic Frictional Shear

Versus Relative Tangential Displacements at Crucial Locations for
Kf 6 x 105
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Figure 58a - Slip History at Node Pair 1
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Figure 58 - Finely Discretized 3-D Shrinkfit with Friction and Bendin
Comparison of Steady-State Slip Responses for Ka- 2 x 10

and 6 x 105 at 1000 Inch-Pound Maximum Bending Load
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Figure 60a - Response of Node Pair 1 (Fig. 58)
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Figure 60b -Response of Node Pair 2 (Fig. 58)

Figure 60 -Fine 3-D Shrinkf it with Friction and Bending, Cyclic Shear Versus
Normal Stress at Crucial Locations, K f u6 x 10, Maximum Bending
Load -1000 Inch-Pounds
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Figure 61 -Fine 3-D Shrinkf it with Friction and Bending, Cyclic Shear versus

Normal Stress at Crucial Locations, Kf -6 x 105, Maximum Bending

Load -666 2/3 Inch-Pounds
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Figure 62a - Response of Node Pair 1 (Fig. 58)
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Figure 62 -Fine 3-D Shrinkf it with Friction and Bending, Cyclic Shear Versus
Normal Stress at Crucial Locations, Kf -6 x 10~ Maximum Bending
Load -333 1/3 Inch-Pounds
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Figure 63a - Response of Node Pair 1 (Fig. 58)
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Figure 63b - Response of Node Pair 2 (Fig. 58)

Figure 63 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional Shear

versus Relative Tangential Displacements at Crucial Locations, Kf =

6 x 105, Haximum Bending Load -
1000 Inch-Pounds
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Figure 64a - Response of Node Pair 1 (Fig. 58)
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Figure 64b - Response of Node Pair 2 (Fig. 58)

Figure 64 - Fine 3-D Shrinkfit with Friction and Bending, Cyclic Frictional Shear

versus Relative Tangential Displacements at Crucial Locations, Kf =

6 x 105, Maximum Bending Load - 666 2/3 Inch-Pounds
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Figure 65 -Fine-3-D Shrinkf it with Friction and Bending, Cyclic Frictional Shear
Versus Relative Tangential Displacements at Crucial Locations, Kf
6 x 105, Maximum Bending Load - 333 1/3 Inch-Pounds
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TABLE 1 - RESULTS OF MARC CALCULATIONS; ATTEMPTS TO SIMULATE
CONWAY'S RIGID PUNCH/ELASTIC SLAB FRICTIONAL CONTACT PROBLEM

Punch Half Width: Slab Depth - 1:4

Approximate %
of Adherence Validity

Friction (from Ref. 49, see MARC Result of MARC
Coefficient Figure 38) Solution

0.60 99 Full Adherence - Converged Valid

0.50 97 Full Adherence - Slow Convergence NV*

0.40 90 Full Slip - Slow Convergence NV

0.30 78 Full Slip - No Convergence NV

0.20 55 Partial Slip - No Convergence NV

0.10 14 Full Adherence - Slow Convergence NV

Punch Half Width: Slab Depth = 1:2

0.60 99 Full Adherence - Converged Valid

0.55 98 Full Adherence - Converged Valid

0.50 97 Full Adherence - Slow Convergence NV

0.45 94 Full Adherence - Slow Convergence NV

0.40 90 Full Slip - Slow Convergence NV

0.35 85 Full Slip - Slow Convergence NV

0.30 78 Full Slip - No Convergence NV

0.25 68 Full Slip - No Convergence NV

0.20 55 Partial Slip - No Convergence NV

0.15 33 Partial Slip - No Convergence NV

0.10 14 Full Adherence - Slow Convergence NV

0.05 4 Full Adherence - Slow Convergence NV

*NV Not Valid
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TABLE 2 - RESULTS OF MARC CALCULATIONS; CONTACT SURFACE BEHAVIOR OF 3-D
ELASTIC SHAFT/ELASTIC SLEEVE SHRINKFIT WITH BENDING AND FRICTION

Ratio FT/FN (Tangential Contact Force/Normal Contact Force) Brackets
Indicate Slipping Condition

Node Pair Shrinkfit and Shrinkfit and Shrinkfit and Shrinkfit and
Number* Bending 333 1/3 in-lb 666 2/3 in-lb 1000 in-lb

1 0 0 0 0

2 0.0023 0.0059 0.0879 0.1275

3 0.0184 0.1188 [0.1491] [0.1501]

4 0 0 0 0

5 0.0017 0.0403 0.0455 0.0523

6 0.0174 0.0549 0.0972 0.1433

7 0 0 0 0

8 0.0023 0.0392 0.1192 [0.15171

9 0.0184 [0.1645] [0.1480] [0.1500]

% Shrinkfit Restraint (Percentage of Prescribed Shrinkfit
Restrained by Shaft)

1 86 85 85 84

2 85 89 94 98

3 87 99 112 125

4 86 86 86 86

5 85 85 85 85

6 87 87 87 87

7 86 65 65 64

8 85 60 55 49

9 87 54 40 25

*Location of Node Pairs.

--JA

1 23

8 ) M

B Section AB
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TABLE 3 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB CONTACT
WITH FRICTION, p = 0.35

Ratio FT/FN (Tangential Contact Force/Normal Contact Force)
Brackets Indicate Slipping Condition

Distance from Frictional Stiffness (K f)

Center Plane
of Symmetry

(in.) 3x106 1x10 7 l.lxl07 1.36x,0 7 1.37x,0 7  5xlO 7

0.0 0 0 0 0

0.250 0.017 0.019 0.019 0.019

0.375 0.040 0.044 0.044 0.045

0.500 0.054 0.063 0.064 0.065 Noncon- Noncon-

0.625 0.070 0.087 0.088 0.092 vergent vergent

0.750 0.114 0.142 0.144 0.150 Solution Solution

0.8125 0.179 0.226 0.231 0.242

0.875 0.197 0.276 0.285 0.311

0.9375 0.212 0.341 [0.350] [0.350]

1.0 0.196 [0.3501[0.3501 [0.350]
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TABLE 4 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB
CONTACT WITH FRICTION, 1J = 0.80

Ratio FT/FN (Tangential Contact Force/Normal Contact

Force) Brackets Indicate Slipping Condition

Distance From Frictional Stiffness (Kf)
Centerplane of
Symmetry (in.) l.lxl0 7  1.14x10 7  1.15x10 7  1.36xi07

0.0 0 0

0.250 0.018 0.018

0.375 0.041 0.041

0.500 0.060 0.059 Noncon- Noncon-

0.625 0.083 0.083 vergent vergent

0.750 0.135 0.134 Solution Solution

0.8125 0.214 0.214

0.875 0.262 0.263

0.9375 0.319 0.320

1.0 0.424 0.431

• .~ . , -.. .



TABLE 5 - ABAQUS ANALYSES OF RIGID PUNCH/ELASTIC SLAB
CONTACT WITH FRICTION, FRICTIONAL STIFFNESS - l.lxlO7

Ratio FT/FN (Tangential Contact Force/Normal Contact Force)
Brackets Indicate Slipping Condition

Distance From Friction Coefficient (ju

Center Plane
of Symmetry

(in.) 0.10 0.15 0.20 0.35 0.50 0.80

0.0 0 0 0 0 0 0

0.250 0.053 0.036 0.029 0.019 0.018 0.018

0.375 [0.100] 0.132 0.067 0.044 0.041 0.041

0.500 [0.100] 0.128 0.099 0.064 0.060 0.060

0.625 [0.100] [0.150] 0.143 0.088 0.083 0.083

0.750 [0.100] [0.150] [0.200] 0.144 0.135 0.135

0.8125 [0.100] [0.1501 [0.200] 0.231 0.214 0.214

0.875 [0.1001 [0.1501 [0.200] 0.285 0.262 0.262

0.9375 [0.1001 [0.150] [0.2001 [0.350] 0.319 0.319

1.0 [0.100] [0.1501 [0.200] [0.3501 0.424 0.424
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TABLE 6 - COMPARISON OF ABAQUS AND MARC ANALYSES OF COARSELY DISCRETIZED
3-D SHAFT/SLEEVE SHRINKFIT WITH BENDING AND FRICTION

Ratio FT/FN (Tangential Contact Force/Normal Contact Force)

Axisymmetric Shrinkfit Only

Node Pair ABAQUS
Frictional Stiffness (Kf)

Number* MARC___________
lxlO 4  2x10 4  U104 4x104 5x10 4

1 0 0 0 0 0 0

2 0.0023 0.0019 0.0038 0.0054 0.0071 0.0087

3 0.0184 0.0081 0.0161 0.0230 0.0303 0.0372

4 0 0 0 0 0 0

5 0.0017 0.0009 0.0019 0.0027 0.0036 0.0044

6 0.0174 0.0040 0.0081 0.0177 0.0156 0.0192

7 0 0 0 0 0 0

8 0.0023 0.0019 0.0038 0.0054 0.0071 0.0078

9 0.0184 0.0081 0.0161 0.0230 0.0303 0.0372

Ratio FT/FN, Maximum Bending Load 1000 in-lb

Brackets Indicate Slipping Condition

1 0 0 0 0 0 0

2 0.1275 0.0010 0.0021 0.0031 0.0041 0.0051

3 [0.1500] 0.0022 0.0043 0.0063 0.0083 0.0103

4 0 0 0 0 0 0

5 0.0523 0.0009 0.0019 0.0028 0.0036 0.0045

6 0.1433 0.0041 0.0082 0.0121 0.0160 0.0198

7 0 0 0 0 0 0

8 [0.1517] 0.0026 0.0052 0.0076 0.0100 0.0122

9 [0.15001 0.0157 0.0310 0.0456 0.0597 0.0732

*Location of Node Pairs as Shown in Table 2.
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TABLE 7 - FINE 3-D SHRINKFIT WITH FRICTION AND BENDING,
COMPARISON OF EXPERIMENTAL FRETTING DAMAGE EXTENT WITH

CALCULATED SLIP ZONE EXTENT

Extend of Significant
Maximum Extent of Damage Observed in Slip Calculated in
Bending DTNSRDC Rotating Bending ABAQUS Cyclic Bend-
Moment Experiment ing Analysis

Average Maximum (in.)(in./Ib) (in.) (in.)(n.

333 1/3 None None At Edge Only

666 2/3 0.007 0.010 0.05

1000 0.009-0.011 0.018 0.05
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APPENDIX

EDGE EFFECTS IN CONTACT PROBLEMS

An edge effect, in the form of a wiggly radial stress distribution, appears

in the extrapolated MARC stress predictions for the elastic shaft/elastic sleeve

shrinkfit problem. This same phenomenon was observed in a corresponding elastic-

ity solution.4 2 The edge effect was found to be more pronounced as the sleeve

thickftess become thinner in relation to shaft radius. The thin sleeve is modelled

as a thin shell in Hill's work, and the influence of hoop restraint allows the

use of a mathematical analogy to a beam on an elastic foundation (reference 73,

pp. 30-33). This analogy gives rise to the edge effect.

This edge effect can be explained even for cases where the sleeve is not thin.

If the shaft and sleeve surfaces are imagined as two thin shells, then the radial,

axial and shear stiffnesses of the components' interiors may be imagined as arrays

of attached discrete springs. The hoop restraint of both thick shells can, according

to the analogy, be represented by a continuous elastic foundation. Both shaft and

sleeve are now beams on elastic foundations, and the total effects of all spring

and foundation restraint can be schematically pictured as two arrays of springs

(Figure 70a).

This conceptual assembly of beams on foundations is now subject to the displac-

ement condition that corresponds to the specified shrinkfit interference (the

distance the sleeve would radially contract if unconstrained). This results in a

physically impossible deformation as shown in Figure 66a. Displacement continuity

can be restored by a concentrated force and moment at the sleeve edge, shown in

Figure 66b. The shear force and bending moment patterns in beam/foundation assem-

blies take on the character of damped waves when acted upon by concentrated forces

and moments (reference 73, Page 14). These disturbances gradually die out away

from the loaded point. This fact explains, in part, why the stress distributions

in the 3-D shaft/sleeve assembly are wiggly near the contact zone edge. It is a

natural consequence of the localized forces needed to maintain displacement con-

tinuity at this edge.

The finite element procedure automatically accounts for such forces so that

both continuity and equilibrium are maintained. The predicted displacements reflect

some actual restrained shrinkage compatible with both the local and overall stiff-

nesses of both shaft and sleeve. Interior radial support of shaft and sleeve
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augments the hoop restraint in the fictitious foundation quite directly, but the

effects of axial and shear restraint on the beam-on-foundation wiggles are difficult

to assess. The beam-on-foundation analogy is not perfect, but It at least provides

a sensible explanation for the predicted viggly stress distributions.
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